针对当前双机器人路径规划复杂的问题,提出了基于RRT^(*)(rapidly-exploring random trees,RRT^(*))算法的弹药装填双机器人路径规划方法。首先,建立双机器人运动学模型并对其工作空间进行分析,确定了双机器人运动过程中发生干涉的可能...针对当前双机器人路径规划复杂的问题,提出了基于RRT^(*)(rapidly-exploring random trees,RRT^(*))算法的弹药装填双机器人路径规划方法。首先,建立双机器人运动学模型并对其工作空间进行分析,确定了双机器人运动过程中发生干涉的可能性;其次,采用RRT^(*)算法,以主机器人末端执行器的路径为障碍物,对从机器人末端路径进行规划,得到从机器人初始路径后,利用碰撞检测算法对路径节点处机器人实际构型进行碰撞检测,反复迭代直至规划出无碰撞机器人路径。最后进行仿真实验,相对于传统RRT^(*)算法,规划出的路径长度缩短,双机器人可以进行无碰撞运动。结果表明本文所提出的双机器人路径规划算法的有效性。展开更多
In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is intr...In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.展开更多
针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算...针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。展开更多
针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相...针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相似性的多步扩展与路径简化,使用贝塞尔曲线拟合生成规划问题初始解,最后使用序列二次规划优化曲线控制点,从而在动态障碍物环境中生成兼具安全性与驾驶舒适性的车辆行驶轨迹.在仿真实验中将本文算法与常规RRT及曲线拟合方法进行了比较,结果显示本文算法在搜索速度、平顺性、安全性等方面有较大提升.展开更多
为实现移动机器人在复杂动态障碍物环境中的避障,提出一种改进的快速随机扩展树(rapidly-exploring random tree,RRT^(*))与动态窗口法(dynamic window approach,DWA)相融合的动态路径规划方法。基于已知环境信息,利用改进RRT^(*)算法...为实现移动机器人在复杂动态障碍物环境中的避障,提出一种改进的快速随机扩展树(rapidly-exploring random tree,RRT^(*))与动态窗口法(dynamic window approach,DWA)相融合的动态路径规划方法。基于已知环境信息,利用改进RRT^(*)算法生成全局最优安全路径。通过消除RRT^(*)算法产生的危险节点,来确保全局路径的安全性;使用贪婪算法去除路径中的冗余节点,以缩短全局路径的长度。利用DWA算法跟踪改进RRT^(*)算法规划的最优路径。当全局路径上出现静态障碍物时,通过二次调整DWA算法评价函数的权重来避开障碍物并及时回归原路线;当环境中出现移动障碍物时,通过提前检测危险距离并转向加速的方式安全驶离该区域。仿真结果表明:该算法在复杂动态环境中运行时间短、路径成本小,与障碍物始终保持安全距离,确保在安全避开动态障碍物的同时,跟踪最优路径。展开更多
针对舰载机甲板路径规划问题,在Informed-RRT^(*)(informed rapidly-exploring random tree)的椭圆采样基础上,提出使用正态分布方式采样的IN-RRT^(*)(informed normal-RRT^(*))算法。首先,针对舰载机与运动场景建模,定义舰载机运动约...针对舰载机甲板路径规划问题,在Informed-RRT^(*)(informed rapidly-exploring random tree)的椭圆采样基础上,提出使用正态分布方式采样的IN-RRT^(*)(informed normal-RRT^(*))算法。首先,针对舰载机与运动场景建模,定义舰载机运动约束和避障策略;其次,将正态分布采样策略与椭圆采样相结合,获取优质高效采样点;引入人工势场法,自适应调节随机树的搜索步长值;使用向心Catmull-Rom样条插值法对路径进行平滑优化处理;提出针对动态障碍改进的动态窗口法,实现局部动态避障。最后,运用甲板平面环境实验检验算法性能。结果表明,IN-RRT^(*)算法能显著优化搜索时间和搜索路径质量,可应对动态场景规划出合理可行的平滑路径。展开更多
文摘针对当前双机器人路径规划复杂的问题,提出了基于RRT^(*)(rapidly-exploring random trees,RRT^(*))算法的弹药装填双机器人路径规划方法。首先,建立双机器人运动学模型并对其工作空间进行分析,确定了双机器人运动过程中发生干涉的可能性;其次,采用RRT^(*)算法,以主机器人末端执行器的路径为障碍物,对从机器人末端路径进行规划,得到从机器人初始路径后,利用碰撞检测算法对路径节点处机器人实际构型进行碰撞检测,反复迭代直至规划出无碰撞机器人路径。最后进行仿真实验,相对于传统RRT^(*)算法,规划出的路径长度缩短,双机器人可以进行无碰撞运动。结果表明本文所提出的双机器人路径规划算法的有效性。
基金National Natural Science Foundation of China(No.61903291)。
文摘In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.
文摘针对Informed-RRT(rapidly-exploring random tree)^(*)算法收敛速度慢、优化效率低和生成路径无法满足实际需求等问题,开展了基于MI-RRT^(*)(Modified Informed-RRT^(*))算法的路径规划研究,通过引入贪心采样和自适应步长的方法提高算法的收敛率,减少路径生成时间、降低内存占用;利用最小化Snap曲线优化的方法使路径平滑的同时动力也变化平缓,达到节省能量的效果,并提供实际可执行的路径。最后通过多组不同复杂度的实验环境表明,较Informed-RRT^(*)算法MI-RRT^(*)算法稳定性更高、所得规划路径平滑可执行,并且能够减少20%的迭代次数和25%的搜索时间,得出在开阔以及密集环境中MI-RRT^(*)算法较Informed-RRT^(*)和RRT^(*)算法有明显的优势。
文摘针对传统快速扩展随机树算法(Rapidly-exploring random tree,RRT)搜索较慢、规划路径曲折、平顺性差等问题,提出了一种结合改进RRT^(*)与贝塞尔曲线控制点优化的智能车辆运动规划方法.该方法通过在给定概率分布下采样,结合基于方向相似性的多步扩展与路径简化,使用贝塞尔曲线拟合生成规划问题初始解,最后使用序列二次规划优化曲线控制点,从而在动态障碍物环境中生成兼具安全性与驾驶舒适性的车辆行驶轨迹.在仿真实验中将本文算法与常规RRT及曲线拟合方法进行了比较,结果显示本文算法在搜索速度、平顺性、安全性等方面有较大提升.
文摘为实现移动机器人在复杂动态障碍物环境中的避障,提出一种改进的快速随机扩展树(rapidly-exploring random tree,RRT^(*))与动态窗口法(dynamic window approach,DWA)相融合的动态路径规划方法。基于已知环境信息,利用改进RRT^(*)算法生成全局最优安全路径。通过消除RRT^(*)算法产生的危险节点,来确保全局路径的安全性;使用贪婪算法去除路径中的冗余节点,以缩短全局路径的长度。利用DWA算法跟踪改进RRT^(*)算法规划的最优路径。当全局路径上出现静态障碍物时,通过二次调整DWA算法评价函数的权重来避开障碍物并及时回归原路线;当环境中出现移动障碍物时,通过提前检测危险距离并转向加速的方式安全驶离该区域。仿真结果表明:该算法在复杂动态环境中运行时间短、路径成本小,与障碍物始终保持安全距离,确保在安全避开动态障碍物的同时,跟踪最优路径。
文摘针对舰载机甲板路径规划问题,在Informed-RRT^(*)(informed rapidly-exploring random tree)的椭圆采样基础上,提出使用正态分布方式采样的IN-RRT^(*)(informed normal-RRT^(*))算法。首先,针对舰载机与运动场景建模,定义舰载机运动约束和避障策略;其次,将正态分布采样策略与椭圆采样相结合,获取优质高效采样点;引入人工势场法,自适应调节随机树的搜索步长值;使用向心Catmull-Rom样条插值法对路径进行平滑优化处理;提出针对动态障碍改进的动态窗口法,实现局部动态避障。最后,运用甲板平面环境实验检验算法性能。结果表明,IN-RRT^(*)算法能显著优化搜索时间和搜索路径质量,可应对动态场景规划出合理可行的平滑路径。