One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary condit...One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary conditions as the approximations do not pass through the nodal parameter values. Another class of meshfree methods based on the radial basis point interpola- tion can satisfy the essential boundary conditions exactly since its approximation function passes through each node in an influence domain and thus its shape functions possess the properties of delta function. In this paper, a coupled element-free Galerkin(EFG)-radial point interpola- tion method (RPIM) is proposed to enhance their advantages and avoid their disadvantages. Discretized equations of equilibrium are obtained in the RPIM region and the EFG region, respectively. Then a collocation approach is introduced to couple the RPIM and the EFG method. This method satisfies the linear consistency exactly and can maintain the stiffness matrix symmetric. Numerical tests show that this method gives reasonably accurate results consistent with the theory.展开更多
伽辽金弱形式和径向基点插值法(Radial basis point interpolation method,RPIM)的无网格法在解决偏微分方程问题中表现出良好的性能,但是在同时提高计算效率和精度方面存在困难。为了提高此类无网格法的计算效率,本文定义了一种基于背...伽辽金弱形式和径向基点插值法(Radial basis point interpolation method,RPIM)的无网格法在解决偏微分方程问题中表现出良好的性能,但是在同时提高计算效率和精度方面存在困难。为了提高此类无网格法的计算效率,本文定义了一种基于背景网格的定义域,在计算定义域内的积分点插值时采用同一批节点,在插值计算过程中减少了部分矩阵计算次数,降低了RPIM无网格法的计算时间。在提高计算精度方面,本文提出一种杂交应力的无网格方法,用Hellinger-Reissner(H-R)变分原理推导求解方程,采用无网格方法求解。数值算例表明,本文方法计算二维固体力学时,在具备良好的计算精度的同时提高了计算速度,具有较高的实际应用价值。展开更多
Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applica...Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applications. To obtain safe and economical structures, the modelling analysis accuracy is highly relevant. Since meshless methods in the recent years achieved a remarkable progress in computational mechanics, the present work uses one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method(RPIM).Here, a 2 D approach is considered to numerically analyse composite laminated beams. Both the meshless formulation and the equilibrium equations ruling the studied physical phenomenon are presented with detail. Several benchmark beam examples are studied and the results are compared with exact solutions available in the literature and the results obtained from a commercial finite element software. The results show the efficiency and accuracy of the proposed numeric technique.展开更多
Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response...Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.展开更多
基金supported by the National Natural Science Foundation of China (No. 11172192)the College Postgraduate Research and Innovation Project of Jiangsu Province (No. CX10B 029Z)the Nominated Excellent Thesis for PHD Candidates Program of Soochow University (No. 23320957)
文摘One of major difficulties in the implementation of meshfree methods using the mov- ing least square (MLS) approximation, such as element-free Galerkin method (EFG), is the im- position of essential boundary conditions as the approximations do not pass through the nodal parameter values. Another class of meshfree methods based on the radial basis point interpola- tion can satisfy the essential boundary conditions exactly since its approximation function passes through each node in an influence domain and thus its shape functions possess the properties of delta function. In this paper, a coupled element-free Galerkin(EFG)-radial point interpola- tion method (RPIM) is proposed to enhance their advantages and avoid their disadvantages. Discretized equations of equilibrium are obtained in the RPIM region and the EFG region, respectively. Then a collocation approach is introduced to couple the RPIM and the EFG method. This method satisfies the linear consistency exactly and can maintain the stiffness matrix symmetric. Numerical tests show that this method gives reasonably accurate results consistent with the theory.
文摘伽辽金弱形式和径向基点插值法(Radial basis point interpolation method,RPIM)的无网格法在解决偏微分方程问题中表现出良好的性能,但是在同时提高计算效率和精度方面存在困难。为了提高此类无网格法的计算效率,本文定义了一种基于背景网格的定义域,在计算定义域内的积分点插值时采用同一批节点,在插值计算过程中减少了部分矩阵计算次数,降低了RPIM无网格法的计算时间。在提高计算精度方面,本文提出一种杂交应力的无网格方法,用Hellinger-Reissner(H-R)变分原理推导求解方程,采用无网格方法求解。数值算例表明,本文方法计算二维固体力学时,在具备良好的计算精度的同时提高了计算速度,具有较高的实际应用价值。
基金the funding provided by Ministério da Ciência,Tecnologia e Ensino Superior--Fundaca para a Ciência e a Tecnologia(Portugal)(Grants SFRH/BPD/75072/2010,SFRH/BPD/111020/2015)the inter-institutional projects from LAETA(Grant UID/EMS/50022/2013)+1 种基金the funding of Project NORTE-010145-FEDER-000022-SciTech-Science and Technology for Competitive and Sustainable Industriescofinanced by Programa Operacional Regional do Norte(Grant NORTE2020),through Fundo Europeu de Desenvolvimento Regional(FEDER)
文摘Laminated composite materials are widely implemented in several engineering constructions. For its relative light weight, these materials are suitable for aerospace, military, marine, and automotive structural applications. To obtain safe and economical structures, the modelling analysis accuracy is highly relevant. Since meshless methods in the recent years achieved a remarkable progress in computational mechanics, the present work uses one of the most flexible and stable interpolation meshless technique available in the literature—the Radial Point Interpolation Method(RPIM).Here, a 2 D approach is considered to numerically analyse composite laminated beams. Both the meshless formulation and the equilibrium equations ruling the studied physical phenomenon are presented with detail. Several benchmark beam examples are studied and the results are compared with exact solutions available in the literature and the results obtained from a commercial finite element software. The results show the efficiency and accuracy of the proposed numeric technique.
基金Project supported by the National Natural Science Foundation of China (No. 60979001)the Major Project of Civil Aviation University of China (No. CAUC2009ZD0101)
文摘Sensitivity analysis of composite laminated plates with bonding imperfection is carried out based on the radial point interpolation method (RPIM) in a Hamilton system. A set of hybrid governing equations of response and sensitivity quantities is reduced using the spring-layer model and the modified Hellinger-Reissner (H-R) variational principle. The analytical method (AM), the semi-analytical method (SAM), and the finite difference method (FDM) are used for sensitivity analysis based on the reduced set of hybrid governing equations. A major advantage of the hybrid governing equations is that the convolution algorithm is avoided in sensitivity analysis. In addition, sensitivity analysis using this set of hybrid governing equations can obtain response values and sensitivity coefficients simultaneously, and accounts for bonding imperfection of composite laminated plates.