Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grai...Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grain yield,and flour quality.In this study,we performed the first comparative analysis of gliadin and glutenin subproteomes during kernel development in the elite Chinese wheat cultivar Zhongmai 175 under high-N conditions by reversed-phase ultra-performance liquid chromatography and twodimensional difference gel electrophoresis(2D-DIGE).Application of high-N fertilizer led to significant increases in gluten macropolymer content,total gliadin and glutenin content,and the accumulation of individual storage protein components.Of 126 differentially accumulated proteins(DAPs)induced by high-N conditions,24 gliadins,12 high-molecularweight glutenins,and 27 low-molecular-weight glutenins were significantly upregulated.DAPs during five kernel developmental stages displayed multiple patterns of accumulation.In particular,gliadins and glutenins showed respectively five and six accumulation patterns.The accumulation of storage proteins under high-N conditions may lead to improved dough properties and bread quality.展开更多
The objective of the present research work is to develop a gradient, reversed-phase liquid chromatographic (RP-UPLC) method for the determination of Finasteride in pharmaceutical bulk drugs for assay and its related i...The objective of the present research work is to develop a gradient, reversed-phase liquid chromatographic (RP-UPLC) method for the determination of Finasteride in pharmaceutical bulk drugs for assay and its related impurities. The chromatographic separation was achieved on a Waters ACQUITY UPLC BEH Phenyl Column (150 mm × 2.1 mm, 1.7 μm), The gradient LC method employs solutions A and B as mobile phase. The solution A Contains 2.5 mM ortho phosphoric acid (Buffer) and solution B contains a mixture of acetonitrile and water in the ratio of (90:10 v/v). The flow rate was 0.22 ml/min and the detection wavelength was 210 nm. In the developed UPLC method, the resolution between Finasteride and its potential impurities, namely Imp-1, Imp-2, Imp-3 and Imp-4 was found to be greater than 2.0. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in alkaline medium and oxidative stress conditions. Degradation product formed during oxidative hydrolysis was found to be Imp-1. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.5%. The developed RP-UPLC method was validated with respect to linearity, accuracy, precision and robustness. The limit of quantification of Imp-1, Imp-2, Imp-3 and Imp-4 were 0.06, 0.06, 0.05 and 0.036% (of analyte concentration, i.e. 0.5 mg/ml) with 1μl injection volume. The developed method was found to be linear in the range of 2.5 - 15 μg/mL with correlation coefficient of 0.999 for assay procedures and found to be linear in the range of 0.05 - 3 μg/mL with correlation coefficient of 0.999 for related impurities.展开更多
基金financially supported by the National Key Research and Development Program of China(2016YFD0100502)the National Natural Science Foundation of China(31171773)
文摘Nitrogen(N),a macronutrient essential for plant growth and development,is needed for biosynthesis of protein and starch,which affect grain yield and quality.Application of high-N fertilizer increases plant growth,grain yield,and flour quality.In this study,we performed the first comparative analysis of gliadin and glutenin subproteomes during kernel development in the elite Chinese wheat cultivar Zhongmai 175 under high-N conditions by reversed-phase ultra-performance liquid chromatography and twodimensional difference gel electrophoresis(2D-DIGE).Application of high-N fertilizer led to significant increases in gluten macropolymer content,total gliadin and glutenin content,and the accumulation of individual storage protein components.Of 126 differentially accumulated proteins(DAPs)induced by high-N conditions,24 gliadins,12 high-molecularweight glutenins,and 27 low-molecular-weight glutenins were significantly upregulated.DAPs during five kernel developmental stages displayed multiple patterns of accumulation.In particular,gliadins and glutenins showed respectively five and six accumulation patterns.The accumulation of storage proteins under high-N conditions may lead to improved dough properties and bread quality.
文摘The objective of the present research work is to develop a gradient, reversed-phase liquid chromatographic (RP-UPLC) method for the determination of Finasteride in pharmaceutical bulk drugs for assay and its related impurities. The chromatographic separation was achieved on a Waters ACQUITY UPLC BEH Phenyl Column (150 mm × 2.1 mm, 1.7 μm), The gradient LC method employs solutions A and B as mobile phase. The solution A Contains 2.5 mM ortho phosphoric acid (Buffer) and solution B contains a mixture of acetonitrile and water in the ratio of (90:10 v/v). The flow rate was 0.22 ml/min and the detection wavelength was 210 nm. In the developed UPLC method, the resolution between Finasteride and its potential impurities, namely Imp-1, Imp-2, Imp-3 and Imp-4 was found to be greater than 2.0. The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation. Considerable degradation was found to occur in alkaline medium and oxidative stress conditions. Degradation product formed during oxidative hydrolysis was found to be Imp-1. The stress samples were assayed against a qualified reference standard and the mass balance was found close to 99.5%. The developed RP-UPLC method was validated with respect to linearity, accuracy, precision and robustness. The limit of quantification of Imp-1, Imp-2, Imp-3 and Imp-4 were 0.06, 0.06, 0.05 and 0.036% (of analyte concentration, i.e. 0.5 mg/ml) with 1μl injection volume. The developed method was found to be linear in the range of 2.5 - 15 μg/mL with correlation coefficient of 0.999 for assay procedures and found to be linear in the range of 0.05 - 3 μg/mL with correlation coefficient of 0.999 for related impurities.