The aim of this paper is to design a water desalination plant using Reverse Osmosis membrane to treat salt water to be usable for drinkable, domestic, industrial or agricultural uses. RO unit is designed to conservati...The aim of this paper is to design a water desalination plant using Reverse Osmosis membrane to treat salt water to be usable for drinkable, domestic, industrial or agricultural uses. RO unit is designed to conservative standards for versatility in the event of feed water quality variations. The design includes a feed water flush cycle to minimize membrane fouling and piping corrosion during shutdown. The system will be all appropriate controls and instrumentation for automatic operation. All system components are available and of heavy duty industrial design and fabricated with the highest quality workmanship. Quality control will be maintained throughout all manufacturing processes. The system will produce permeate water minimum of 3600 m<sup>3</sup>/day with a quality of approximately 100 ppm total dissolved solids (TDS) when operating on well feed water with a 10,000 ppm TDS and a temperature of 25 - 30 degrees C. The design permeate recovery is 50%;and energy recovery device which saves $30,556.28/year.展开更多
Water and energy shortages came due to rapid population growth, living standards and rapid development in the agriculture and industrial sectors. Desalination tends to be one of the most promising water solutions;howe...Water and energy shortages came due to rapid population growth, living standards and rapid development in the agriculture and industrial sectors. Desalination tends to be one of the most promising water solutions;however, it is a process of intense energy. Membrane Capacitive Deionization (MCDI) has received considerable interest as a promising desalination technology, and MCDI research has increased significantly over the last 10 years. In addition, there are no guidelines for the design of Capacitive Deionization (CDI) implementation strategies for individual applications. This study, therefore;provides an alternative of CDI’s recent application developments, with emphasis placed on hybrid systems to address the technological needs of different relevant fields. The MCDI’s energy consumption is compared with the reverse osmosis literature data based on experimental data from laboratory-scale system. The study demonstrates that MCDI technology is a promising technology in the next few years with an extreme competition in water recovery, energy consumption and salt removal for reverse osmosis.展开更多
基金supported by the National Natural ScienceFoundation of China ( 20306015 ) and the Scientific ResearchFoundation for Returned Overseas Chinese Scholars , the NationalEducation Ministry of China ( [2003] 406) .
文摘The aim of this paper is to design a water desalination plant using Reverse Osmosis membrane to treat salt water to be usable for drinkable, domestic, industrial or agricultural uses. RO unit is designed to conservative standards for versatility in the event of feed water quality variations. The design includes a feed water flush cycle to minimize membrane fouling and piping corrosion during shutdown. The system will be all appropriate controls and instrumentation for automatic operation. All system components are available and of heavy duty industrial design and fabricated with the highest quality workmanship. Quality control will be maintained throughout all manufacturing processes. The system will produce permeate water minimum of 3600 m<sup>3</sup>/day with a quality of approximately 100 ppm total dissolved solids (TDS) when operating on well feed water with a 10,000 ppm TDS and a temperature of 25 - 30 degrees C. The design permeate recovery is 50%;and energy recovery device which saves $30,556.28/year.
文摘Water and energy shortages came due to rapid population growth, living standards and rapid development in the agriculture and industrial sectors. Desalination tends to be one of the most promising water solutions;however, it is a process of intense energy. Membrane Capacitive Deionization (MCDI) has received considerable interest as a promising desalination technology, and MCDI research has increased significantly over the last 10 years. In addition, there are no guidelines for the design of Capacitive Deionization (CDI) implementation strategies for individual applications. This study, therefore;provides an alternative of CDI’s recent application developments, with emphasis placed on hybrid systems to address the technological needs of different relevant fields. The MCDI’s energy consumption is compared with the reverse osmosis literature data based on experimental data from laboratory-scale system. The study demonstrates that MCDI technology is a promising technology in the next few years with an extreme competition in water recovery, energy consumption and salt removal for reverse osmosis.