AIM: To investigate the inhibitory effect of a specific small survivin interfering RNA (siRNA) on cell proliferation and the expression of survivin in human gastric carcinoma cell line SGC-7901. METHODS: To knockdown ...AIM: To investigate the inhibitory effect of a specific small survivin interfering RNA (siRNA) on cell proliferation and the expression of survivin in human gastric carcinoma cell line SGC-7901. METHODS: To knockdown survivin expression, a small interfering RNA targeting against survivin was synthesized and transfected into SGC-7901 cells with lipofectamineTM2000. The downregulation of survivin expression at both mRNA and protein levels were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Cell proliferation inhibition rates were determined by methyl thiazolyl tetrazolium (MTT) assay. The effect of survivin siRNA on cell cycle distribution and cell apoptosis was determined by flow cytometry (FCM). RESULTS: RNA interference could efficiently suppress the survivin expression in SGC-7901 cells. At 48 h after transfection, the expression inhibition rate was 44.52% at mRNA level detected by RT-PCR and 40.17% at protein level by Western blot analysis. Downregulation of survivin resulted in significant inhibition of tumor cell growth in vitro. The cell proliferation inhibition rates at 24, 48 and 72 h after survivin siRNA and non-siliencing siRNA transfection, were 34.06%, 47.61% and 40.36%, respectively. The apoptosis rate was 3.56% and the number of cells was increased in G0/G1 phase from 38.2% to 88.6%, and decreased in S and G2/M phase at 48 h after transfection. CONCLUSION: Downregulation of survivin results in significant inhibition of tumor growth in vitro. The inhibition of survivin expression can induce apoptosis of SGC-7901 cells. The use of survivin siRNA deserves further investigation as a novel approach to cancer therapy.展开更多
AIM: To investigate the survivin gene expression in human hepatocellular carcinoma cell line SMMC-7721 and the effects of survivin gene RNA interference (RNAi) on cell apoptosis and biological behaviors of SMMC-7721 c...AIM: To investigate the survivin gene expression in human hepatocellular carcinoma cell line SMMC-7721 and the effects of survivin gene RNA interference (RNAi) on cell apoptosis and biological behaviors of SMMC-7721 cells. METHODS: Eukaryotic expression vector of survivin gene RNAi and recombinant plasmid pSuppressorNeo-survivin (pSuNeo-SW), were constructed by ligating into the vector, pSupperssorNeo (pSuNeo) digested with restriction enzymes Xba I and Sail and the designed double-chain RNAi primers. A cell model of SMMC-7721 after treatment with RNAi was prepared by transfecting SMMC-7721 cells with the lipofectin transfection method. Strept-avidin-biotin-complex (SABC) immunohistochemical staining and RT-PCR were used to detect survivin gene expressions in SMMC-7721 cells. Flow cytometry was used for the cell cycle analysis. Transmission electron microscopy was performed to determine whether RNAi induced cell apoptosis, and the method of measuring the cell growth curve was utilized to study the growth of SMMC-7721 cells before and after treatment with RNAi. RESULTS: The eukaryotic expression vector of survivin gene RNAi and pSuNeo-SW, were constructed successfully. The expression level of survivin gene in SMMC-7721 cells was observed. After the treatment of RNAi, the expression of survivin gene in SMMC-7721 cells was almost absent, apoptosis index was increased by 15.6%, and the number of cells was decreased in G2/M phase and the cell growth was inhibited. CONCLUSION: RNAi can exert a knockdown of survivin gene expression in SMMC-7721 cells, and induce apoptosis and inhibit the growth of carcinoma cells.展开更多
AIM: To study the effect of inhibited E-cadherin expression on invasion of cancer cells.METHODS: We designed the nucleotide sequence of siRNA corresponding to 5' non-coding and coding sequence of E-cadherin. 21-nu...AIM: To study the effect of inhibited E-cadherin expression on invasion of cancer cells.METHODS: We designed the nucleotide sequence of siRNA corresponding to 5' non-coding and coding sequence of E-cadherin. 21-nucleotide dssiRNA was synthesized by in vitro transcription with Ambion Silencer TM siRNA Construction Kit. siRNA was transfected into gastric cancer MKN45 using TransMessenger transfection Kit. RT-PCR and immunofluorescent assay were used to investigate the inhibition of the expression of mutated Ecadherin. Invasive ability of cancer cells was determined by Transwell assay.RESULTS: The synthesis of E-cadherin mRNA rather than protein expression was suppressed dramatically 7 d after interference. Decreased protein expression was observed on d 10 after interference. On d 11, invasion ability was enhanced significantly.CONCLUSION: siRNA targeted at non-coding and coding sequence of E-cadherin showed significant inhibition on mRNA and protein expression. Inhibited E-cadherin expression results in increased invasion ability of cancer cells.展开更多
AIM: We shall construct the small interfering RNA (siRNA) expression cassette (SEC) targeting activated K-ras gene sequence, identify more effective siRNA sequence against K-ras gene in human pancreatic cancer cell li...AIM: We shall construct the small interfering RNA (siRNA) expression cassette (SEC) targeting activated K-ras gene sequence, identify more effective siRNA sequence against K-ras gene in human pancreatic cancer cell line MiaPaCa-2 by SEC and reveal the anti-cancer effects of RNA interference (RNAi) and its therapeutic possibilities. METHODS: Three different sites of SECs were constructed by PCR. K1/siRNA,K2/siRNA and K3/siRNA are located at sites 194,491 and 327, respectively. They were transfected into MiaPaCa-2 cells by liposome to inhibit the expression of activated K-ras. In the interfering groups of sites 194 and 491, we detected the apoptosis in cells by FACS after they were incubated for 48 h, then we tested the alternation of K-ras gene in MiaPaCa-2 cells by RT-PCR immunofluorescence, respectively. RESULTS: Introduction of the Kl/siRNA and K2/siRNA against K-ras into MiaPaCa-2 cells leads to increased apoptosis, and the number of apoptotic cells is increased compared with control cells. The tests of RT-PCR immunofluorescence show the effects of inhibiting expression of activated K-ras gene by RNA interference in the Kl/siRNA and K2/siRNA groups. We also find that the introduction of K3/siRNA has no effect on MiaPaCa-2 cells. CONCLUSION: Kl/siRNA and K2/siRNA can inhibit the expression of activated K-ras but K3/siRNA has no effect, demonstrating that Kl/siRNA and K2/siRNA are effective sequences against K-ras gene and K3/siRNA are not. We conclude that specific siRNA against K-ras expression may be a powerful tool to be used therapeutically against human pancreatic cancer.展开更多
RNA interference(RNAi)targeting lethal genes in insects has great potential for sustainable crop protection.Compared with traditional double-stranded(ds)RNA delivery systems,nanoparticles such as chitosan,liposomes,an...RNA interference(RNAi)targeting lethal genes in insects has great potential for sustainable crop protection.Compared with traditional double-stranded(ds)RNA delivery systems,nanoparticles such as chitosan,liposomes,and cationic dendrimers offer advantages in delivering dsRNA/small interfering(si)RNA to improve RNAi efficiency,thus promoting the development and practice of RNAi-based pest management strategies.Here,we illustrate the limitations of traditional dsRNA delivery systems,reveal the mechanism of nanoparticle-mediated RNAi,summarize the recent progress and successful applications of nanoparticle-mediated RNAi in pest management,and finally address the prospects of nanoparticle-based RNA pesticides.展开更多
文摘AIM: To investigate the inhibitory effect of a specific small survivin interfering RNA (siRNA) on cell proliferation and the expression of survivin in human gastric carcinoma cell line SGC-7901. METHODS: To knockdown survivin expression, a small interfering RNA targeting against survivin was synthesized and transfected into SGC-7901 cells with lipofectamineTM2000. The downregulation of survivin expression at both mRNA and protein levels were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis. Cell proliferation inhibition rates were determined by methyl thiazolyl tetrazolium (MTT) assay. The effect of survivin siRNA on cell cycle distribution and cell apoptosis was determined by flow cytometry (FCM). RESULTS: RNA interference could efficiently suppress the survivin expression in SGC-7901 cells. At 48 h after transfection, the expression inhibition rate was 44.52% at mRNA level detected by RT-PCR and 40.17% at protein level by Western blot analysis. Downregulation of survivin resulted in significant inhibition of tumor cell growth in vitro. The cell proliferation inhibition rates at 24, 48 and 72 h after survivin siRNA and non-siliencing siRNA transfection, were 34.06%, 47.61% and 40.36%, respectively. The apoptosis rate was 3.56% and the number of cells was increased in G0/G1 phase from 38.2% to 88.6%, and decreased in S and G2/M phase at 48 h after transfection. CONCLUSION: Downregulation of survivin results in significant inhibition of tumor growth in vitro. The inhibition of survivin expression can induce apoptosis of SGC-7901 cells. The use of survivin siRNA deserves further investigation as a novel approach to cancer therapy.
文摘AIM: To investigate the survivin gene expression in human hepatocellular carcinoma cell line SMMC-7721 and the effects of survivin gene RNA interference (RNAi) on cell apoptosis and biological behaviors of SMMC-7721 cells. METHODS: Eukaryotic expression vector of survivin gene RNAi and recombinant plasmid pSuppressorNeo-survivin (pSuNeo-SW), were constructed by ligating into the vector, pSupperssorNeo (pSuNeo) digested with restriction enzymes Xba I and Sail and the designed double-chain RNAi primers. A cell model of SMMC-7721 after treatment with RNAi was prepared by transfecting SMMC-7721 cells with the lipofectin transfection method. Strept-avidin-biotin-complex (SABC) immunohistochemical staining and RT-PCR were used to detect survivin gene expressions in SMMC-7721 cells. Flow cytometry was used for the cell cycle analysis. Transmission electron microscopy was performed to determine whether RNAi induced cell apoptosis, and the method of measuring the cell growth curve was utilized to study the growth of SMMC-7721 cells before and after treatment with RNAi. RESULTS: The eukaryotic expression vector of survivin gene RNAi and pSuNeo-SW, were constructed successfully. The expression level of survivin gene in SMMC-7721 cells was observed. After the treatment of RNAi, the expression of survivin gene in SMMC-7721 cells was almost absent, apoptosis index was increased by 15.6%, and the number of cells was decreased in G2/M phase and the cell growth was inhibited. CONCLUSION: RNAi can exert a knockdown of survivin gene expression in SMMC-7721 cells, and induce apoptosis and inhibit the growth of carcinoma cells.
基金Supported by the national "973" (national key program on basic research) foundation of China, No. G1998051203
文摘AIM: To study the effect of inhibited E-cadherin expression on invasion of cancer cells.METHODS: We designed the nucleotide sequence of siRNA corresponding to 5' non-coding and coding sequence of E-cadherin. 21-nucleotide dssiRNA was synthesized by in vitro transcription with Ambion Silencer TM siRNA Construction Kit. siRNA was transfected into gastric cancer MKN45 using TransMessenger transfection Kit. RT-PCR and immunofluorescent assay were used to investigate the inhibition of the expression of mutated Ecadherin. Invasive ability of cancer cells was determined by Transwell assay.RESULTS: The synthesis of E-cadherin mRNA rather than protein expression was suppressed dramatically 7 d after interference. Decreased protein expression was observed on d 10 after interference. On d 11, invasion ability was enhanced significantly.CONCLUSION: siRNA targeted at non-coding and coding sequence of E-cadherin showed significant inhibition on mRNA and protein expression. Inhibited E-cadherin expression results in increased invasion ability of cancer cells.
文摘AIM: We shall construct the small interfering RNA (siRNA) expression cassette (SEC) targeting activated K-ras gene sequence, identify more effective siRNA sequence against K-ras gene in human pancreatic cancer cell line MiaPaCa-2 by SEC and reveal the anti-cancer effects of RNA interference (RNAi) and its therapeutic possibilities. METHODS: Three different sites of SECs were constructed by PCR. K1/siRNA,K2/siRNA and K3/siRNA are located at sites 194,491 and 327, respectively. They were transfected into MiaPaCa-2 cells by liposome to inhibit the expression of activated K-ras. In the interfering groups of sites 194 and 491, we detected the apoptosis in cells by FACS after they were incubated for 48 h, then we tested the alternation of K-ras gene in MiaPaCa-2 cells by RT-PCR immunofluorescence, respectively. RESULTS: Introduction of the Kl/siRNA and K2/siRNA against K-ras into MiaPaCa-2 cells leads to increased apoptosis, and the number of apoptotic cells is increased compared with control cells. The tests of RT-PCR immunofluorescence show the effects of inhibiting expression of activated K-ras gene by RNA interference in the Kl/siRNA and K2/siRNA groups. We also find that the introduction of K3/siRNA has no effect on MiaPaCa-2 cells. CONCLUSION: Kl/siRNA and K2/siRNA can inhibit the expression of activated K-ras but K3/siRNA has no effect, demonstrating that Kl/siRNA and K2/siRNA are effective sequences against K-ras gene and K3/siRNA are not. We conclude that specific siRNA against K-ras expression may be a powerful tool to be used therapeutically against human pancreatic cancer.
基金the Beijing Natural Science Foundation(6204043)National Natural Science Foundation of China(31900363).
文摘RNA interference(RNAi)targeting lethal genes in insects has great potential for sustainable crop protection.Compared with traditional double-stranded(ds)RNA delivery systems,nanoparticles such as chitosan,liposomes,and cationic dendrimers offer advantages in delivering dsRNA/small interfering(si)RNA to improve RNAi efficiency,thus promoting the development and practice of RNAi-based pest management strategies.Here,we illustrate the limitations of traditional dsRNA delivery systems,reveal the mechanism of nanoparticle-mediated RNAi,summarize the recent progress and successful applications of nanoparticle-mediated RNAi in pest management,and finally address the prospects of nanoparticle-based RNA pesticides.