采用数字孪生技术对货到人拣货机器人系统RMFS(the robotic mobile fulfillment systems)进行研究,提出了针对RMFS系统的数字孪生模型构建方法并给出了数字孪生实例。实验数据表明,所构建的数字孪生系统可更好地描述RMFS系统AV(automati...采用数字孪生技术对货到人拣货机器人系统RMFS(the robotic mobile fulfillment systems)进行研究,提出了针对RMFS系统的数字孪生模型构建方法并给出了数字孪生实例。实验数据表明,所构建的数字孪生系统可更好地描述RMFS系统AV(automatic vehicle)死锁和冲突的规律,可方便地随物理RMFS系统重构而重构,实现系统共生。数字孪生系统可为更好地理解RMFS系统内在规律,指导电商企业更好地使用RMFS系统提供帮助。展开更多
随着电子商务的蓬勃发展,海量客户需求和高频率、多品种、小批量的订单特性为订单拣选业务带来巨大挑战。在物流智能化的趋势下,大量电商企业采用移动机器人拣货系统(Robotic Mobile Fulfillment System,RMFS)进行订单拣选。订单分配和...随着电子商务的蓬勃发展,海量客户需求和高频率、多品种、小批量的订单特性为订单拣选业务带来巨大挑战。在物流智能化的趋势下,大量电商企业采用移动机器人拣货系统(Robotic Mobile Fulfillment System,RMFS)进行订单拣选。订单分配和拣选路径规划是影响仓库订单拣选效率的关键决策。为了提高电商RMFS系统拣选效率,降低仓库运营成本,基于电商企业多订单、多货架、多拣选站下的拣选业务场景,以最小化机器人负载距离为目标,构建订单分配与路径规划联合优化模型,设计两阶段的A*算法和自适应大领域搜索算法(Adaptive Large Neighborhood Search,ALNS),在ALNS算法原有框架的基础上提出新的移除和修复算子以适应订单分配问题,并针对30个不同规模算例进行计算分析。计算结果表明,所提出的优化方法收敛快、性能稳定,能够有效缩短机器人行走距离,相比先到先拣选策略最大可缩短47.6%的机器人负载距离。同时,也可在更短时间内获得与CPLEX求解质量相近的解。尤其是当订单数量增长时,相比CPLEX具有突出时间优势,可以实现电商仓储资源的合理调度和配置,从而为电商企业仓储智能化提供有效决策指导。展开更多
基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统,相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性.为全面了解RMFS的运行模...基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统,相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性.为全面了解RMFS的运行模式及其优化方向,本文首先回顾了RMFS的工作流程及优化理论框架,然后对RMFS的货位指派、订单分批、任务分配、路径规划以及建模方法等问题进行了文献回顾和总结,并指出了RMFS与传统拣货系统在拣货过程方面的异同及当前研究的不足.最后,讨论了RMFS的几个重要研究方向,为RMFS的理论研究和应用实践提供参考.展开更多
在全球零售额和当天交货量不断增长的时代,实现订单的快速交付和优质分批是影响移动机器人履行系统(Robotic Mobile Fulfillment Systems,RMFS)拣选效率的关键因素.为构造高质量订单分配批次、提升RMFS系统拣选效率,提出融合大邻域搜索...在全球零售额和当天交货量不断增长的时代,实现订单的快速交付和优质分批是影响移动机器人履行系统(Robotic Mobile Fulfillment Systems,RMFS)拣选效率的关键因素.为构造高质量订单分配批次、提升RMFS系统拣选效率,提出融合大邻域搜索的改进差分进化算法(LNS_DE),引入大邻域搜索的破坏与修复思想及一批基于随机、基于最大代价贡献和基于集中批次的移除算子以及新的插入算子组件,以最小化订单总延迟时间为目标建立订单分批优化模型,并针对不同订单规模算例进行实验仿真.仿真结果表明,所提出的订单分批优化算法较差分进化算法(DE)相比求解质量更优,性能更稳定、收敛速度更快,尤其当订单数量增大时,LNS_DE算法解的平均值优化比例不断扩大,这为提高RMFS系统拣选效率,实现订单快速响应提供有效决策指导.展开更多
文摘随着电子商务的蓬勃发展,海量客户需求和高频率、多品种、小批量的订单特性为订单拣选业务带来巨大挑战。在物流智能化的趋势下,大量电商企业采用移动机器人拣货系统(Robotic Mobile Fulfillment System,RMFS)进行订单拣选。订单分配和拣选路径规划是影响仓库订单拣选效率的关键决策。为了提高电商RMFS系统拣选效率,降低仓库运营成本,基于电商企业多订单、多货架、多拣选站下的拣选业务场景,以最小化机器人负载距离为目标,构建订单分配与路径规划联合优化模型,设计两阶段的A*算法和自适应大领域搜索算法(Adaptive Large Neighborhood Search,ALNS),在ALNS算法原有框架的基础上提出新的移除和修复算子以适应订单分配问题,并针对30个不同规模算例进行计算分析。计算结果表明,所提出的优化方法收敛快、性能稳定,能够有效缩短机器人行走距离,相比先到先拣选策略最大可缩短47.6%的机器人负载距离。同时,也可在更短时间内获得与CPLEX求解质量相近的解。尤其是当订单数量增长时,相比CPLEX具有突出时间优势,可以实现电商仓储资源的合理调度和配置,从而为电商企业仓储智能化提供有效决策指导。
文摘基于移动机器人的拣货系统(Robotic mobile fulfillment systems, RMFS)作为一种新型物至人的拣货系统,相比人工拣货系统和AS/RS拣货系统(下文统称传统拣货系统)具有更高的拣货效率、更好的系统可扩展性和柔性.为全面了解RMFS的运行模式及其优化方向,本文首先回顾了RMFS的工作流程及优化理论框架,然后对RMFS的货位指派、订单分批、任务分配、路径规划以及建模方法等问题进行了文献回顾和总结,并指出了RMFS与传统拣货系统在拣货过程方面的异同及当前研究的不足.最后,讨论了RMFS的几个重要研究方向,为RMFS的理论研究和应用实践提供参考.
文摘在全球零售额和当天交货量不断增长的时代,实现订单的快速交付和优质分批是影响移动机器人履行系统(Robotic Mobile Fulfillment Systems,RMFS)拣选效率的关键因素.为构造高质量订单分配批次、提升RMFS系统拣选效率,提出融合大邻域搜索的改进差分进化算法(LNS_DE),引入大邻域搜索的破坏与修复思想及一批基于随机、基于最大代价贡献和基于集中批次的移除算子以及新的插入算子组件,以最小化订单总延迟时间为目标建立订单分批优化模型,并针对不同订单规模算例进行实验仿真.仿真结果表明,所提出的订单分批优化算法较差分进化算法(DE)相比求解质量更优,性能更稳定、收敛速度更快,尤其当订单数量增大时,LNS_DE算法解的平均值优化比例不断扩大,这为提高RMFS系统拣选效率,实现订单快速响应提供有效决策指导.