针对测向定位中时延估计的问题,提出了一种基于递推最小二乘(Recursive Least Squares,RLS)算法的二次加权相关时延估计方法。该方法在二次相关算法基础上,一方面引入RLS算法,在二次相关前进行自适应滤波,提高系统抗噪能力,且具有较快...针对测向定位中时延估计的问题,提出了一种基于递推最小二乘(Recursive Least Squares,RLS)算法的二次加权相关时延估计方法。该方法在二次相关算法基础上,一方面引入RLS算法,在二次相关前进行自适应滤波,提高系统抗噪能力,且具有较快的收敛速度;另一方面借鉴广义互相关的思路,引入加权函数,并且采用二次加权方式,提高时延估计的性能。仿真结果表明,在低信噪比环境下,基于RLS的二次加权相关时延估计法使谱峰更加尖锐,抑制了噪声的影响,提高了估计的精度。展开更多
文摘针对测向定位中时延估计的问题,提出了一种基于递推最小二乘(Recursive Least Squares,RLS)算法的二次加权相关时延估计方法。该方法在二次相关算法基础上,一方面引入RLS算法,在二次相关前进行自适应滤波,提高系统抗噪能力,且具有较快的收敛速度;另一方面借鉴广义互相关的思路,引入加权函数,并且采用二次加权方式,提高时延估计的性能。仿真结果表明,在低信噪比环境下,基于RLS的二次加权相关时延估计法使谱峰更加尖锐,抑制了噪声的影响,提高了估计的精度。