本文利用区域气候模式RIEMS2.0(Regional Integrated Environmental Model System)和2006年以及2020年三种排放情景下的排放资料,研究了2006年气候背景下的人为气溶胶的浓度分布特征及辐射效应,估算了未来不同排放情景下人为气溶胶的主...本文利用区域气候模式RIEMS2.0(Regional Integrated Environmental Model System)和2006年以及2020年三种排放情景下的排放资料,研究了2006年气候背景下的人为气溶胶的浓度分布特征及辐射效应,估算了未来不同排放情景下人为气溶胶的主要成分硫酸盐、硝酸盐、黑碳、有机碳(含二次有机碳)的综合气候效应.结果表明:(1)2006年中国地区人为气溶胶浓度硫酸盐>有机碳>硝酸盐>黑碳,其区域柱浓度平均值分别为6.0、4.0、1.3和0.3mg/m2.(2)2006年硫酸盐、硝酸盐、有机碳和黑碳的平均辐射强迫分别为-1.32、-0.60、-0.40和0.28W/m2.硫酸盐、硝酸盐和有机碳的负辐射强迫超过黑碳的正辐射强迫,人为气溶胶总辐射强迫为-1.96W/m2.(3)人为气溶胶的辐射效应及引起的地面气温变化对排放源非常敏感,未来采取不同排放政策导致的人为气溶胶的含量及辐射效应有较大差异.在未来排放增加的情景下,各区域的气溶胶浓度、辐射强迫、气温下降幅度和降水减少幅度也相应加大.展开更多
In this paper, the RIEMS 2.0 model is used to simulate the distribution of sulfate, black carbon, and organic carbon aerosols over China (16.2°-44.1°N, 93.4°-132.4°E) in 1998. The climate effects...In this paper, the RIEMS 2.0 model is used to simulate the distribution of sulfate, black carbon, and organic carbon aerosols over China (16.2°-44.1°N, 93.4°-132.4°E) in 1998. The climate effects of these three anthropogenic aerosols are also simulated. The results are summarized as follows: (1) The regional average column burdens of sulfate, BC, OC, and SOC were 5.9, 0.24, 2.4, and 0.49 mg m-2, with maxima of 33.9, 1.48, 7.3, and 1.1 mg m-2, respectively. The column burden and surface concentration of secondary organic carbon accounted for about 20% and 7%, respectively, of the total organic carbon in eastern China. (2) The radiative forcings of sulfate, organic carbon, and black carbon at the top of the atmosphere were -1.24, -0.6, and 0.16 W m 2 respectively, with extremes of -5.25, -2.6, and 0.91 W m-2. (3) The surface air temperature changes caused by sulfate, organic carbon, and black carbon were -0.07, -0.04, and 0.01 K, respectively. The air temperature increase caused by black carbon at 850 hPa was higher than that at the surface. The net effect of the three kinds of anthropogenic aerosols together decreased the annual average temperature by -0.075 K; the maximum value was -0.3 K. (4) Black carbon can reduce the precipitation in arid and semi-arid areas of northern China and increase the precipitation in wet and semi-wet areas of southern China. The average precipitation increase caused by black carbon in China was 0.003 mm d^-1. The net effect of the three kinds of anthropogenic aerosols was to decrease the precipitation over China by 0.008 mmd ^-1.展开更多
A continuous 22-year simulation in Asia for the period of 1 January 1979 to 31 December 2000 was conducted using the Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis Ⅱ data as the drivi...A continuous 22-year simulation in Asia for the period of 1 January 1979 to 31 December 2000 was conducted using the Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis Ⅱ data as the driving fields. The model processes include surface physics state package (BATS 1e), a Grell cumulus parameterization, and a modified radiation package (CCM3) with the focus on the ability of the model to simulate the summer monsoon over East Asia. The analysis results show that (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature. When regionally averaged, the summer mean temperature biases are within 1―2℃. (2) For precipitation, the model reproduces well the spatial pattern, and temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced. The rain belt simulated by RIEMS 2.0 is closer to observation than by RIEMS 1.0. (3) RIEMS 2.0 can reasonably reproduce the large-scale circulation.展开更多
Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM dev...Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.展开更多
RIEMS2.0 (Regional Integrated Environment Modeling System, Version 2.0) is now being developed starting from RIEMS1.0 by the Key Laboratory of Regional Climate Environment Research for Temperate East Asia, Institute o...RIEMS2.0 (Regional Integrated Environment Modeling System, Version 2.0) is now being developed starting from RIEMS1.0 by the Key Laboratory of Regional Climate Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, China. In order to test RIEMS2.0’s ability to simulate long-term climate and its changes, as well as provide a basis for further development and applications, we compare simulated precipitation and air temperature from 1980 to 2007 (simulation duration from Jan. 1, 1979 to Dec. 31, 2007) under different cumulus parameterization schemes with the observed data. The results show that RIEMS2.0 can reproduce the spatial distribution of precipitation and air temperature, but that the model overestimates precipitation with the rainfall center moving northwestward and underestimates air temperature for annual simulations. Annual and interannual variations in precipitation and air temperature for different climate subregions are well captured by the model. Further analysis of summer and winter simulations shows that precipitation is overestimated, except for the Jianghuai-Jiangnan subregions in the winter, and the air temperature bias in the summer is weaker than in the winter. There are larger biases for precipitation and air temperature in semiarid subregions. Anomalies in precipitation and air temperature are also well captured by the model. Although a similar distribution can be found between observed data and simulated results under different cumulus parameterization schemes, these show differences in intensity and location. In sum, RIEMS2.0 shows good stability and does well in simulating the long-term climate and its changes in China.展开更多
Regional Integrated Environment Modeling System Version 2.0 (RIEMS2.0) is now being developed by the Key Laboratory of Regional Climate-Environment for Temperate East Asia, Chinese Academy of Sciences. In order to tes...Regional Integrated Environment Modeling System Version 2.0 (RIEMS2.0) is now being developed by the Key Laboratory of Regional Climate-Environment for Temperate East Asia, Chinese Academy of Sciences. In order to test the sensitivity of the RIEMS2.0 model domain to simulate long-term climate and its change, and provide a basis for the further development and application of the model, the authors compared results between simulated and observed precipitation and surface-airtemperature using two model domains under different cumulus parameterization schemes. The model was driven by NCEP/NCAR re-analysis data with a simulation duration ranging from 1 January 1979 to 31 December 2007. There were no significant differences found in the spatial distributions of the simulated precipitation and surface-air-temperature, or interannual variations between the two model domains. There were, however, differences observed between the two model domain simulations of local sub-regions. The smaller model domain more accurately simulated precipitation, especially in summer (June, July, and August), and decreased the bias of surface-airtemperature, especially in winter (December, January, and February). The weak summer and winter monsoons simulated by the smaller model domain was a result of boundary forcings and may partially account for the improvements of this model.展开更多
区域环境系统集成模式(RIEMS2.0,Regional Integrated Environment Modeling System Version 2.0)是由中国科学院大气物理研究所东亚区域气候环境重点实验室在RIEMS1.0基础上发展的区域气候模式。为了检验RIEMS2.0对短期气候的模拟能力...区域环境系统集成模式(RIEMS2.0,Regional Integrated Environment Modeling System Version 2.0)是由中国科学院大气物理研究所东亚区域气候环境重点实验室在RIEMS1.0基础上发展的区域气候模式。为了检验RIEMS2.0对短期气候的模拟能力,利用降水和气温(2 m)观测资料检验RIESM2.0不同物理过程和初始条件集合模拟1997/1998年夏季中国华北地区高温干旱和长江流域洪涝两个连续极端气候事件的能力(连续积分时间(1997年3月1日—1998年8月31日)共18个月),比较模拟和观测的1997/1998年夏季降水和气温。集合模拟结果表明RIEMS2.0能很好模拟1997/1998年夏季降水和气温及其两年差值分布;模拟和观测的日降水和平均气温结果有很好的相关性,但是降水模拟总体高估,干旱和江淮及江南区气温模拟偏高而半干旱和湿润区气温模拟偏低。在不同物理过程集合模拟中,虽然集合平均距平相关系数(ACC)和均方根误差(RMSE)并不是优于所有集合成员值,但集合模拟能减小模式的不确定性,在一定程度上提高模拟精度。不同显式水汽方案和积云参数化方案对降水、气温模拟效果表现出很好的一致性,湿润区一致性最好。因此,RIEMS2.0模拟能揭示1997/1998年两个连续极端气候事件夏季降水和气温空间分布,反映不同子区域降水和气温分布特征,各集合成员的模拟结果存在差异的同时也保持了很好的稳定性,选择合适的物理过程可以提高模式对区域气候的模拟能力。展开更多
文摘本文利用区域气候模式RIEMS2.0(Regional Integrated Environmental Model System)和2006年以及2020年三种排放情景下的排放资料,研究了2006年气候背景下的人为气溶胶的浓度分布特征及辐射效应,估算了未来不同排放情景下人为气溶胶的主要成分硫酸盐、硝酸盐、黑碳、有机碳(含二次有机碳)的综合气候效应.结果表明:(1)2006年中国地区人为气溶胶浓度硫酸盐>有机碳>硝酸盐>黑碳,其区域柱浓度平均值分别为6.0、4.0、1.3和0.3mg/m2.(2)2006年硫酸盐、硝酸盐、有机碳和黑碳的平均辐射强迫分别为-1.32、-0.60、-0.40和0.28W/m2.硫酸盐、硝酸盐和有机碳的负辐射强迫超过黑碳的正辐射强迫,人为气溶胶总辐射强迫为-1.96W/m2.(3)人为气溶胶的辐射效应及引起的地面气温变化对排放源非常敏感,未来采取不同排放政策导致的人为气溶胶的含量及辐射效应有较大差异.在未来排放增加的情景下,各区域的气溶胶浓度、辐射强迫、气温下降幅度和降水减少幅度也相应加大.
基金supported by the National Program on Key Basic Research Project of China (973) under Grant Nos.2006CB400506 and 2010CB428501the National Natural Science Foundation of China (Grant No.40775014)
文摘In this paper, the RIEMS 2.0 model is used to simulate the distribution of sulfate, black carbon, and organic carbon aerosols over China (16.2°-44.1°N, 93.4°-132.4°E) in 1998. The climate effects of these three anthropogenic aerosols are also simulated. The results are summarized as follows: (1) The regional average column burdens of sulfate, BC, OC, and SOC were 5.9, 0.24, 2.4, and 0.49 mg m-2, with maxima of 33.9, 1.48, 7.3, and 1.1 mg m-2, respectively. The column burden and surface concentration of secondary organic carbon accounted for about 20% and 7%, respectively, of the total organic carbon in eastern China. (2) The radiative forcings of sulfate, organic carbon, and black carbon at the top of the atmosphere were -1.24, -0.6, and 0.16 W m 2 respectively, with extremes of -5.25, -2.6, and 0.91 W m-2. (3) The surface air temperature changes caused by sulfate, organic carbon, and black carbon were -0.07, -0.04, and 0.01 K, respectively. The air temperature increase caused by black carbon at 850 hPa was higher than that at the surface. The net effect of the three kinds of anthropogenic aerosols together decreased the annual average temperature by -0.075 K; the maximum value was -0.3 K. (4) Black carbon can reduce the precipitation in arid and semi-arid areas of northern China and increase the precipitation in wet and semi-wet areas of southern China. The average precipitation increase caused by black carbon in China was 0.003 mm d^-1. The net effect of the three kinds of anthropogenic aerosols was to decrease the precipitation over China by 0.008 mmd ^-1.
基金Supported by the National Basic Research Program of China (Grant Nos. 2006CB400506 and 2009CB421100)International Cooperation Program for Science and Technology (Grant No. 2006DFB919201)Knowledge Innovation Project of Chinese Academy of Sciences (Grant Nos. KZ CX2-YW-Q11-03 and IAP07211)
文摘A continuous 22-year simulation in Asia for the period of 1 January 1979 to 31 December 2000 was conducted using the Regional Integrated Environmental Model System (RIEMS 2.0) with NCEP Reanalysis Ⅱ data as the driving fields. The model processes include surface physics state package (BATS 1e), a Grell cumulus parameterization, and a modified radiation package (CCM3) with the focus on the ability of the model to simulate the summer monsoon over East Asia. The analysis results show that (1) RIEMS reproduces well the spatial pattern and the seasonal cycle of surface temperature. When regionally averaged, the summer mean temperature biases are within 1―2℃. (2) For precipitation, the model reproduces well the spatial pattern, and temporal evolution of the East Asia summer monsoon rain belt, with steady phases separated by more rapid transitions, is reproduced. The rain belt simulated by RIEMS 2.0 is closer to observation than by RIEMS 1.0. (3) RIEMS 2.0 can reasonably reproduce the large-scale circulation.
基金supported by the National Basic Research Program of China under Grant 2011CB952003the Chinese Academy of Sciences Strategic Priority Program under Grant XDA05090206the National Natural Science Foundation of China under Grant 40975053
文摘Regional climate models (RCMs) have the potential for more detailed surface characteristic and mesoscale modeling results than general circulation models (GCMs).These advantages have drawn significant focus on RCM development in East Asia.The Regional Integrated Environment Modeling System,version 2.0 (RIEMS2.0),has been developed from an earlier RCM,RIEMS1.0,by the Key Laboratory of Regional ClimateEnvironment for Temperate East Asia (RCE-TEA) and Nanjing University.A numerical experiment covering 1979 to 2008 (simulation duration from 1 January 1978 to 31 December 2008) with a 50-km spatial resolution was performed to test the ability of RIEMS2.0 to simulate long-term climate and climate changes in East Asia and to provide a basis for further development and applications.The simulated surface air temperature (SAT) was compared with observed meteorological data.The results show that RIEMS2.0 simulation reproduced the SAT spatial distribution in East Asia but that it was underestimated.The simulated 30-year averaged SAT was approximately 2.0°C lower than the observed SAT.The annual and interannual variations in the averaged SAT and their anomalies were both well reproduced in the model.A further analysis of three sub-regions representing different longitudinal ranges showed that there is a good correlation and consistency between the simulated results and the observed data.The annual variations,interannual variations for the averaged SAT,and the anomalies in the three sub-regions were also captured well by the model.In summary,RIEMS2.0 shows stability and does well both in simulating the long-term SAT in East Asia and in expressing sub-regional characteristics.
基金Supported by the National Basic Research Program of China (Grant No. 2006CB400500)China Postdoctoral Science Foundation (Grant No. 20060400492)
文摘RIEMS2.0 (Regional Integrated Environment Modeling System, Version 2.0) is now being developed starting from RIEMS1.0 by the Key Laboratory of Regional Climate Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, China. In order to test RIEMS2.0’s ability to simulate long-term climate and its changes, as well as provide a basis for further development and applications, we compare simulated precipitation and air temperature from 1980 to 2007 (simulation duration from Jan. 1, 1979 to Dec. 31, 2007) under different cumulus parameterization schemes with the observed data. The results show that RIEMS2.0 can reproduce the spatial distribution of precipitation and air temperature, but that the model overestimates precipitation with the rainfall center moving northwestward and underestimates air temperature for annual simulations. Annual and interannual variations in precipitation and air temperature for different climate subregions are well captured by the model. Further analysis of summer and winter simulations shows that precipitation is overestimated, except for the Jianghuai-Jiangnan subregions in the winter, and the air temperature bias in the summer is weaker than in the winter. There are larger biases for precipitation and air temperature in semiarid subregions. Anomalies in precipitation and air temperature are also well captured by the model. Although a similar distribution can be found between observed data and simulated results under different cumulus parameterization schemes, these show differences in intensity and location. In sum, RIEMS2.0 shows good stability and does well in simulating the long-term climate and its changes in China.
基金supported by the National Natural Science Foundation of China (Grant No. 40975053)the National Basic Research Program of China (Grant No. 2006CB400500)
文摘Regional Integrated Environment Modeling System Version 2.0 (RIEMS2.0) is now being developed by the Key Laboratory of Regional Climate-Environment for Temperate East Asia, Chinese Academy of Sciences. In order to test the sensitivity of the RIEMS2.0 model domain to simulate long-term climate and its change, and provide a basis for the further development and application of the model, the authors compared results between simulated and observed precipitation and surface-airtemperature using two model domains under different cumulus parameterization schemes. The model was driven by NCEP/NCAR re-analysis data with a simulation duration ranging from 1 January 1979 to 31 December 2007. There were no significant differences found in the spatial distributions of the simulated precipitation and surface-air-temperature, or interannual variations between the two model domains. There were, however, differences observed between the two model domain simulations of local sub-regions. The smaller model domain more accurately simulated precipitation, especially in summer (June, July, and August), and decreased the bias of surface-airtemperature, especially in winter (December, January, and February). The weak summer and winter monsoons simulated by the smaller model domain was a result of boundary forcings and may partially account for the improvements of this model.
文摘区域环境系统集成模式(RIEMS2.0,Regional Integrated Environment Modeling System Version 2.0)是由中国科学院大气物理研究所东亚区域气候环境重点实验室在RIEMS1.0基础上发展的区域气候模式。为了检验RIEMS2.0对短期气候的模拟能力,利用降水和气温(2 m)观测资料检验RIESM2.0不同物理过程和初始条件集合模拟1997/1998年夏季中国华北地区高温干旱和长江流域洪涝两个连续极端气候事件的能力(连续积分时间(1997年3月1日—1998年8月31日)共18个月),比较模拟和观测的1997/1998年夏季降水和气温。集合模拟结果表明RIEMS2.0能很好模拟1997/1998年夏季降水和气温及其两年差值分布;模拟和观测的日降水和平均气温结果有很好的相关性,但是降水模拟总体高估,干旱和江淮及江南区气温模拟偏高而半干旱和湿润区气温模拟偏低。在不同物理过程集合模拟中,虽然集合平均距平相关系数(ACC)和均方根误差(RMSE)并不是优于所有集合成员值,但集合模拟能减小模式的不确定性,在一定程度上提高模拟精度。不同显式水汽方案和积云参数化方案对降水、气温模拟效果表现出很好的一致性,湿润区一致性最好。因此,RIEMS2.0模拟能揭示1997/1998年两个连续极端气候事件夏季降水和气温空间分布,反映不同子区域降水和气温分布特征,各集合成员的模拟结果存在差异的同时也保持了很好的稳定性,选择合适的物理过程可以提高模式对区域气候的模拟能力。