我们通常所说的高等微积分中大部分基本的公式和技巧是在18世纪发展起来的.更仔细的定义,更严格的证明,没有这些证明难以得到的微妙新结果,以及由此提出的新概念,则是19世纪的产物.19世纪也是复分析基础的来源,从Cauchy-Riemann(柯西-黎...我们通常所说的高等微积分中大部分基本的公式和技巧是在18世纪发展起来的.更仔细的定义,更严格的证明,没有这些证明难以得到的微妙新结果,以及由此提出的新概念,则是19世纪的产物.19世纪也是复分析基础的来源,从Cauchy-Riemann(柯西-黎曼)方程到Riemann曲面以及其他成果.如果你想知道这一切怎么得来的,你应该去读一下Jeremy Gray的《实分析和复分析(The Real and the Complex)》这本书.展开更多
Let (Mn, g) and (N^n+1, G) be Riemannian manifolds. Let TMn and TN^n+1 be the associated tangent bundles. Let f : (M^n, g) → (N^+1, G) be an isometrical immersion with g = f^*G, F = (f, df) : (TM^n,g...Let (Mn, g) and (N^n+1, G) be Riemannian manifolds. Let TMn and TN^n+1 be the associated tangent bundles. Let f : (M^n, g) → (N^+1, G) be an isometrical immersion with g = f^*G, F = (f, df) : (TM^n,g) → (TN^n+1, Gs) be the isometrical immersion with g= F*Gs where (df)x : TxM → Tf(x)N for any x∈ M is the differential map, and Gs be the Sasaki metric on TN induced from G. This paper deals with the geometry of TM^n as a submanifold of TN^n+1 by the moving frame method. The authors firstly study the extrinsic geometry of TMn in TN^n+1. Then the integrability of the induced almost complex structure of TM is discussed.展开更多
文摘我们通常所说的高等微积分中大部分基本的公式和技巧是在18世纪发展起来的.更仔细的定义,更严格的证明,没有这些证明难以得到的微妙新结果,以及由此提出的新概念,则是19世纪的产物.19世纪也是复分析基础的来源,从Cauchy-Riemann(柯西-黎曼)方程到Riemann曲面以及其他成果.如果你想知道这一切怎么得来的,你应该去读一下Jeremy Gray的《实分析和复分析(The Real and the Complex)》这本书.
基金supported by the National Natural Science Foundation of China(No.61473059)the Fundamental Research Funds for the Central University(No.DUT11LK47)
文摘Let (Mn, g) and (N^n+1, G) be Riemannian manifolds. Let TMn and TN^n+1 be the associated tangent bundles. Let f : (M^n, g) → (N^+1, G) be an isometrical immersion with g = f^*G, F = (f, df) : (TM^n,g) → (TN^n+1, Gs) be the isometrical immersion with g= F*Gs where (df)x : TxM → Tf(x)N for any x∈ M is the differential map, and Gs be the Sasaki metric on TN induced from G. This paper deals with the geometry of TM^n as a submanifold of TN^n+1 by the moving frame method. The authors firstly study the extrinsic geometry of TMn in TN^n+1. Then the integrability of the induced almost complex structure of TM is discussed.