Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for...Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters.展开更多
【目的】小麦株高决定了种植密度和抗倒性,对产量具有显著影响。本研究旨在利用不同背景的遗传群体材料验证前期发现的2个株高QTL位点,Qph.cib-5A和Qph.cibb-7A,及其对产量性状的影响,以期为分子育种提供参考。【方法】2个重组自交系群...【目的】小麦株高决定了种植密度和抗倒性,对产量具有显著影响。本研究旨在利用不同背景的遗传群体材料验证前期发现的2个株高QTL位点,Qph.cib-5A和Qph.cibb-7A,及其对产量性状的影响,以期为分子育种提供参考。【方法】2个重组自交系群体于2015-2016、2016-2017年种植于四川双流和四川什邡,F_2群体于2017年种植于四川双流,获得表型数据。通过竞争性等位基因特异性PCR(Kompetitive Allele Specific PCR,KASP)反应、35K和90K芯片分别对2个F_2群体,川麦42×川麦39重组自交系和川麦42×川农16重组自交系进行基因分型。比较携带不同基因型株系株高、穗长、穗粒数和千粒重的差异。【结果】在F_2群体中,Qph.cib-5A和Qph.cibb-7A能显著增加株高7.75%和6.19%;在2个重组自交系群体中,Qph.cib-5A能增加株高(4.2%~10%)、穗长(4%~9.1%)和千粒重(2.5%~4.5%),而不影响穗粒数。Qph.cibb-7A在不影响穗粒数和穗长的前提下增加株高(3.3%~6.1%)和千粒重(2.5%~4%)。此外,当同时聚合Qph.cib-5A和Qph.cibb-7A时对株高(7.4%~13.1%)和千粒重(4.7%~7.5%)的效应更加显著。【结论】本研究证实Qph.cib-5A和Qph.cibb-7A对株高调控具有显著作用,同时对千粒重也会产生较大影响,因此该研究的结果以及开发的标记可应用于小麦育种和小麦调控株高遗传机制的解析。展开更多
The RHT model has 34 parameters,among which 19 parameters can be obtained by experiments or theoretical calculations and the remaining 15 parameters are difficult to acquire.In this study,firstly,10 Hopkinson impact t...The RHT model has 34 parameters,among which 19 parameters can be obtained by experiments or theoretical calculations and the remaining 15 parameters are difficult to acquire.In this study,firstly,10 Hopkinson impact tests were conducted to acquire the typical stress-strain curves of granite under dynamic loads.Through the sensitivity analysis,it is found that 13 of the 15 difficult-acquired parameters are effective to affect the shape of the stress-strain curve,and the other two parameters have no effect.Following the initial determination of model parameters with reference to the concrete RHT model,a new approach is proposed to optimize the 13 influential parameters through the LS-DYNA numerical simulation and orthogonal experiments.Finally,the determined granite RHT model parameters are verified by the results of Hopkinson impact tests conducted in this study and the bullet penetration test by Wang et al.Both results of the numerical simulations are in a good agreement with the tested results,which validates the suitability of the proposed method to acquire RHT model parameters for granite and the other rocks.展开更多
Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative resea...Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.展开更多
This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the...This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.展开更多
This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of ol...This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of old architecture and public buildings.We carried out penetration experiments in which four clay-fired brick walls employing two different patterns were subjected to impact from small high-speed projectile,i.e.12.7 mm armor-piercing explosive incendiary projectile and material tests in which the static and dynamic compressive strengths of clay-fired brick and mortar were determined by quasi-static and SHPB(Split Hopkinson Pressure Bar)tests.The experimental data include hit and exit velocities,damage configuration of clay brick masonry and mechanical properties of material at low and high strain rates,though which influence of thickness and bonding patterns of wall on kinetic loss of bullet,the damage patterns of masonry observed experimentally and dynamic increase of material strengths are analyzed.To keep minimum boundary inconsistency with reality,full 3D detailed finite element model consisting of two different material is established.Sharing common nodes and employing automatic tiebreak contact are combined to reduce computational time usage of large-scale model.For description of clay-fired brick and mortar RiedeleHiermaiereThoma(RHT)material model is employed.Material parameter set is derived based on experimental data,available literature and engineering assumptions.The numerical simulations study the mesh resolution dependency of material model,reproduce the crucial phenomena of masonry in experiment acceptably and offer more time-resolved insight into motion of bullet in the process of penetration.The feasibility of means of constructing finite element model and applying RHT model to the masonry herein and analogous constructions is explored through numerical investigation.展开更多
基金Projects(11802058,52074262)supported by the National Natural Science Foundation of ChinaProjects(BK20170670,BK20180651)supported by the Jiangsu Youth Foundation,China+2 种基金Project(2020QN06)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(SKLGDUEK1803)supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering,ChinaProject supported by the Mass Entrepreneurship and Innovation Project of Jiangsu,China。
文摘Eccentric decoupling blasting is commonly used in underground excavation.Determination of perimeter hole parameters(such as the blasthole diameter,spacing,and burden)based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect.In this paper,the Riedel-Hiermaier-Thoma(RHT)model was employed to study rock mass damage under smooth blasting.Firstly,the parameters of the RHT model were calibrated by using the existing SHPB experiment,which were then verified by the existing blasting experiment results.Secondly,the influence of different charge structures on the blasting effect was investigated using the RHT model.The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect.Finally,to improve the blasting effect,the smooth blasting parameters were optimized based on an eccentric charge structure.The overbreak and underbreak phenomena were effectively controlled,and a good blasting effect was achieved with the optimized blasting parameters.
文摘【目的】小麦株高决定了种植密度和抗倒性,对产量具有显著影响。本研究旨在利用不同背景的遗传群体材料验证前期发现的2个株高QTL位点,Qph.cib-5A和Qph.cibb-7A,及其对产量性状的影响,以期为分子育种提供参考。【方法】2个重组自交系群体于2015-2016、2016-2017年种植于四川双流和四川什邡,F_2群体于2017年种植于四川双流,获得表型数据。通过竞争性等位基因特异性PCR(Kompetitive Allele Specific PCR,KASP)反应、35K和90K芯片分别对2个F_2群体,川麦42×川麦39重组自交系和川麦42×川农16重组自交系进行基因分型。比较携带不同基因型株系株高、穗长、穗粒数和千粒重的差异。【结果】在F_2群体中,Qph.cib-5A和Qph.cibb-7A能显著增加株高7.75%和6.19%;在2个重组自交系群体中,Qph.cib-5A能增加株高(4.2%~10%)、穗长(4%~9.1%)和千粒重(2.5%~4.5%),而不影响穗粒数。Qph.cibb-7A在不影响穗粒数和穗长的前提下增加株高(3.3%~6.1%)和千粒重(2.5%~4%)。此外,当同时聚合Qph.cib-5A和Qph.cibb-7A时对株高(7.4%~13.1%)和千粒重(4.7%~7.5%)的效应更加显著。【结论】本研究证实Qph.cib-5A和Qph.cibb-7A对株高调控具有显著作用,同时对千粒重也会产生较大影响,因此该研究的结果以及开发的标记可应用于小麦育种和小麦调控株高遗传机制的解析。
基金Supported by the Talent Indroduction Research Start-up Fund Project of Kunming University of Science and Technology(KKSY201756009)
文摘The RHT model has 34 parameters,among which 19 parameters can be obtained by experiments or theoretical calculations and the remaining 15 parameters are difficult to acquire.In this study,firstly,10 Hopkinson impact tests were conducted to acquire the typical stress-strain curves of granite under dynamic loads.Through the sensitivity analysis,it is found that 13 of the 15 difficult-acquired parameters are effective to affect the shape of the stress-strain curve,and the other two parameters have no effect.Following the initial determination of model parameters with reference to the concrete RHT model,a new approach is proposed to optimize the 13 influential parameters through the LS-DYNA numerical simulation and orthogonal experiments.Finally,the determined granite RHT model parameters are verified by the results of Hopkinson impact tests conducted in this study and the bullet penetration test by Wang et al.Both results of the numerical simulations are in a good agreement with the tested results,which validates the suitability of the proposed method to acquire RHT model parameters for granite and the other rocks.
基金supported by the National Natural Science Foundation of China(52004013,U1762211).
文摘Axial and torsional impact drilling technology is used to improve the drilling efficiency of hard rock formation in the deep underground.Still,the corresponding theory is not mature,and there are few correlative research reports on the rock-breaking mechanism of axial and torsional coupled impact drilling tools.Considering the influence of the impact hammer geometry and movement on the dynamic load parameters(i.e.,wavelength,amplitude,frequency,and phase difference),a numerical model that includes a hard formation and single polycrystalline diamond compact cutter was established.The Riedel-Hiermaier-Thoma model,which considers the dynamic damage and strength behavior of rocks,was adopted to analyze the rock damage under axial and torsional impact loads.The numerical simu-lation results were verified by the experimental results.It was found that compared with conventional drilling,the penetration depths of axial,torsional,and axial-torsional coupled impact drilling increased by 31.3%,5.6%,and 34.7%,respectively.Increasing the wavelength and amplitude of the axial impact stress wave improved the penetration depth.When the bit rotation speed remained unchanged,increasing the frequency in the axial and circumferential directions had little effect on the penetration depth.However,as the frequency increased,the cutting surface became increasingly smooth,which reduced the occurrence of bit vibration.When the phase difference between the axial and circumfer-ential stress waves was 25%,the penetration depth significantly increased.In addition,the bit vibration problem can be effectively reduced.Finally,the adjustment of engineering and tool structure parameters is proposed to optimize the efficiency of the axial-torsional coupled impact drilling tool.
文摘This article refers to the commercial application assessment of the novel S-RHT catalysts.The application outcome has shown that the catalysts loading was reduced with its performance kept at the original level at the initial and middle stages of operation. The performance of catalysts at the end of operation was analyzed, and factors affecting the performance of the novel catalysts at the end of run were identified to facilitate further improvement of the said catalysts.
基金The work presented in this paper is funded by Opening Project of Science and Technology on Transient Impact Laboratory(Grant No.614260601010517).
文摘This study investigates a kind of masonry consisting of clay-fired brick(f_(c)=10 MPa;r=1:38 g/cm^(3))and mortar(f_(c)=10 MPa;r=1:8 g/cm^(3)).Clay-fired brick masonry connotes a traditional construction material of old architecture and public buildings.We carried out penetration experiments in which four clay-fired brick walls employing two different patterns were subjected to impact from small high-speed projectile,i.e.12.7 mm armor-piercing explosive incendiary projectile and material tests in which the static and dynamic compressive strengths of clay-fired brick and mortar were determined by quasi-static and SHPB(Split Hopkinson Pressure Bar)tests.The experimental data include hit and exit velocities,damage configuration of clay brick masonry and mechanical properties of material at low and high strain rates,though which influence of thickness and bonding patterns of wall on kinetic loss of bullet,the damage patterns of masonry observed experimentally and dynamic increase of material strengths are analyzed.To keep minimum boundary inconsistency with reality,full 3D detailed finite element model consisting of two different material is established.Sharing common nodes and employing automatic tiebreak contact are combined to reduce computational time usage of large-scale model.For description of clay-fired brick and mortar RiedeleHiermaiereThoma(RHT)material model is employed.Material parameter set is derived based on experimental data,available literature and engineering assumptions.The numerical simulations study the mesh resolution dependency of material model,reproduce the crucial phenomena of masonry in experiment acceptably and offer more time-resolved insight into motion of bullet in the process of penetration.The feasibility of means of constructing finite element model and applying RHT model to the masonry herein and analogous constructions is explored through numerical investigation.