Radio-frequency interference (RFI) affects greatly the quality of the data and retrieval products from space-borne microwave radiometry. Analysis of the Advanced Microwave Scanning Radiometer on the Earth Observing ...Radio-frequency interference (RFI) affects greatly the quality of the data and retrieval products from space-borne microwave radiometry. Analysis of the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Aqua satellite observations reveals very strong and widespread RFI contam- inations on the C- and X-band data. Fortunately, the strong and moderate RFI signals can be easily identified using an index on observed brightness temperature spectrum. It is the weak RFI that is diffi- cult to be separated from the nature surface emission. In this study, a new algorithm is proposed for RFI detection and correction. The simulated brightness temperature is used as a background signal (B) and a departure of the observation from the background (O–B) is utilized for detection of RFI. It is found that the O–B departure can result from either a natural event (e.g., precipitation or flooding) or an RFI signal. A separation between the nature event and RFI is further realized based on the scattering index (SI). A positive SI index and low brightness temperatures at high frequencies indicate precipitation. In the RFI correction, a relationship between AMSR-E measurements at 10.65 GHz and those at 18.7 or 6.925 GHz is first developed using the AMSR-E training data sets under RFI-free conditions. Contamination of AMSR-E measurements at 10.65 GHz is then predicted from the RFI-free measurements at 18.7 or 6.925 GHz using this relationship. It is shown that AMSR-E measurements with the RFI-correction algorithm have better agreement with simulations in a variety of surface conditions.展开更多
This study presents a general outline of the Qitai radio telescope(QTT)project.Qitai,the site of the telescope,is a county of Xinjiang Uygur Autonomous Region of China,located in the east Tianshan Mountains at an elev...This study presents a general outline of the Qitai radio telescope(QTT)project.Qitai,the site of the telescope,is a county of Xinjiang Uygur Autonomous Region of China,located in the east Tianshan Mountains at an elevation of about 1800 m.The QTT is a fully steerable,Gregorian-type telescope with a standard parabolic main reflector of 110 m diameter.The QTT has adopted an umbrella support,homology-symmetric lightweight design.The main reflector is active so that the deformation caused by gravity can be corrected.The structural design aims to ultimately allow high-sensitivity observations from 150 MHz up to115 GHz.To satisfy the requirements for early scientific goals,the QTTwill be equipped with ultra-wideband receivers and large field-of-view multi-beam receivers.A multi-function signal-processing system based on RFSo C and GPU processor chips will be developed.These will enable the QTT to operate in pulsar,spectral line,continuum and Very Long Baseline Interferometer(VLBI)observing modes.Electromagnetic compatibility(EMC)and radio frequency interference(RFI)control techniques are adopted throughout the system design.The QTT will form a world-class observational platform for the detection of lowfrequency(nano Hertz)gravitational waves through pulsar timing array(PTA)techniques,pulsar surveys,the discovery of binary black-hole systems,and exploring dark matter and the origin of life in the universe.The QTT will also play an important role in improving the Chinese and international VLBI networks,allowing high-sensitivity and high-resolution observations of the nuclei of distant galaxies and gravitational lensing systems.Deep astrometric observations will also contribute to improving the accuracy of the celestial reference frame.Potentially,the QTT will be able to support future space activities such as planetary exploration in the solar system and to contribute to the search for extraterrestrial intelligence.展开更多
Background: Residual feed intake(RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate difference...Background: Residual feed intake(RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate differences in ruminal bacteria, biopolymer hydrolyzing enzyme activities, and overall performance between the most-and the leastefficient dairy cows during the peripartal period. Twenty multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from d-10 to d 60 relative to the calving date were used. Cows were classified into most-efficient(i.e. with low RFI, n = 10) and least-efficient(i.e. with high RFI, n = 10) based on a linear regression model involving dry matter intake(DMI), fat-corrected milk(FCM), changes in body weight(BW), and metabolic BW.Results: The most-efficient cows had ~ 2.6 kg/d lower DMI at wk 4, 6, 7, and 8 compared with the least-efficient cows. In addition, the most-efficient cows had greater relative abundance of total ruminal bacterial community during the peripartal period. Compared with the least-efficient cows, the most-efficient cows had 4-fold greater relative abundance of Succinivibrio dextrinosolvens at d-10 and d 10 around parturition and tended to have greater abundance of Fibrobacter succinogenes and Megaspheara elsdenii. In contrast, the relative abundance of Butyrivibrio proteoclasticus and Streptococcus bovis was lower and Succinimonas amylolytica and Prevotella bryantii tended to be lower in the most-efficient cows around calving. During the peripartal period, the most-efficient cows had lower enzymatic activities of cellulase, amylase, and protease compared with the least-efficient cows.Conclusions: The results suggest that shifts in ruminal bacteria and digestive enzyme activities during the peripartal period could, at least in part, be part of the mechanism associated with better feed efficiency in dairy cows.展开更多
Background: Residual feed intake(RFI) describes an animal’s feed efficiency independent of growth performance.The objective of this study was to determine differences in growth performance, carcass traits, major bact...Background: Residual feed intake(RFI) describes an animal’s feed efficiency independent of growth performance.The objective of this study was to determine differences in growth performance, carcass traits, major bacteria attached to ruminal solids-fraction, and ruminal epithelium gene expression between the most-efficient and the least-efficient beef cattle. One-hundred and forty-nine Red Angus cattle were allocated to three contemporary groups according to sex and herd origin. Animals were fed a finishing diet in confinement for 70 d to determine the RFI category for each. Within each group, the two most-efficient(n = 6; RFI coefficient =-2.69 ± 0.58 kg dry matter intake(DMI)/d) and the two least-efficient animals(n = 6; RFI coefficient = 3.08 ± 0.55 kg DMI/d) were selected. Immediately after slaughter, ruminal solids-fraction and ruminal epithelium were collected for bacteria relative abundance and epithelial gene expression analyses, respectively, using real-time PCR.Results: The most-efficient animals consumed less feed(P = 0.01; 5.03 kg less DMI/d) compared with the leastefficient animals. No differences(P > 0.10) in initial body weight(BW), final BW, and average daily gain(ADG) were observed between the two RFI classes. There were no significant RFI × sex effects(P > 0.10) on growth performance.Compared with the least-efficient group, hot carcass weight(HCW), ribeye area(REA), and kidney, pelvic, and heart fat(KPH) were greater(P ≤ 0.05) in the most-efficient cattle. No RFI × sex effect(P > 0.10) for carcass traits was detected between RFI groups. Of the 10 bacterial species evaluated, the most-efficient compared with least efficient cattle had greater(P ≤ 0.05) relative abundance of Eubacterium ruminantium, Fibrobacter succinogenes, and Megasphaera elsdenii, and lower(P ≤ 0.05) Succinimonas amylolytica and total bacterial density. No RFI × sex effect on ruminal bacteria was detected between RFI groups. Of the 34 genes evaluated in ruminal epithelium, the mostefficient cattle had greater(P ≤ 展开更多
Land retrievals using passive microwave radiometers are sensitive to small fluctuations in land brightness temperatures. As such, the radio-frequency interference (RFI) signals emanating from man-made microwave radi...Land retrievals using passive microwave radiometers are sensitive to small fluctuations in land brightness temperatures. As such, the radio-frequency interference (RFI) signals emanating from man-made microwave radiation transmitters can result in large errors in land retrievals. RFI in C-and X-band channels can con-taminate remotely sensed measurements, as experienced with the Advanced Microwave Scanning Radiometer (AMSR-E) and the WindSat sensor. In this work, applications of an RFI detection and correction algorithm in retrieving a comprehensive suite of geophysical parameters from AMSR-E measurements using the one-dimensional variational retrieval (1-DVAR) method are described. The results indicate that the values of retrieved parameters, such as land skin temperature (LST), over these areas contaminated by RFI are much higher than those from the global data assimilation system (GDAS) products. The results also indicate that the differences between new retrievals and GDAS products are decreased evidently through taking into account the RFI correction algorithm. In addition, the convergence metric (χ2) of 1-DVAR is found to be a new method for identifying regions where land retrievals are affected by RFI. For example, in those regions with much stronger RFI, such as Europe and Japan, χ2 of 1-DVAR is so large that convergence cannot be reached and retrieval results may not be reliable or cannot be obtained. Furthermore,χ2 also decreases with the RFI-corrected algorithm for those regions with moderate or weak RFI. The results of RFI detected byχ2 are almost consistent with those identified by the spectral difference method.展开更多
Background: The feed conversion ratio(FCR) and residual feed intake(RFI) are common indexes in measuring feed efficiency for livestock. RFI is a feed intake adjusted for requirements for maintenance and production so ...Background: The feed conversion ratio(FCR) and residual feed intake(RFI) are common indexes in measuring feed efficiency for livestock. RFI is a feed intake adjusted for requirements for maintenance and production so these two traits are related. Similarly, FCR is related to feed intake and weight gain because it is their ratio. Cholecystokinin type A receptor(CCKAR) plays an important role in animal digestive process. We examined the interplay of these three parameters in a local Chinese chicken population.Results: The feed intake(FI) and body weights(BW) of 1,841 individuals were monitored on a daily basis from 56 to 105 d of age. There was a strong correlation between RFI and average daily feed intake(ADFI) and a negative correlation between the FCR and daily gain(r=-0.710). Furthermore, we identified 51 single nucleotide polymorphisms(SNPs) in the CCKAR and 4 of these resulted in amino acid mutations. The C334A mutation was specifically associated with FI and the expected feed intake(EFI)(P < 0.01) and significantly associated with the average daily gain(ADG)(P < 0.05). G1290A was significantly associated with FI and EFI(P < 0.05).Conclusion: FCR is apply to weight selecting, and RFI is more appropriate if the breeding focus is feed intake. And C334A and G1290A of the CCKAR gene can be deemed as candidate markers for feed intake and weight gain.展开更多
基金Supported by the National Key Basic Research and Development (973) Program of China(2010CB951600)National Natural Science Foundation of China(40875015,40875016,and40975019)+2 种基金Special Fund for University Doctoral Students of China(20060300002)Chinese Academy of Meteorological Sciences"Application of Meteorological Data in GRAPES-3DVar" ProgramNOAA/NESDIS/Center for Satellite Applications and Research (STAR) CalVal Program
文摘Radio-frequency interference (RFI) affects greatly the quality of the data and retrieval products from space-borne microwave radiometry. Analysis of the Advanced Microwave Scanning Radiometer on the Earth Observing System (AMSR-E) Aqua satellite observations reveals very strong and widespread RFI contam- inations on the C- and X-band data. Fortunately, the strong and moderate RFI signals can be easily identified using an index on observed brightness temperature spectrum. It is the weak RFI that is diffi- cult to be separated from the nature surface emission. In this study, a new algorithm is proposed for RFI detection and correction. The simulated brightness temperature is used as a background signal (B) and a departure of the observation from the background (O–B) is utilized for detection of RFI. It is found that the O–B departure can result from either a natural event (e.g., precipitation or flooding) or an RFI signal. A separation between the nature event and RFI is further realized based on the scattering index (SI). A positive SI index and low brightness temperatures at high frequencies indicate precipitation. In the RFI correction, a relationship between AMSR-E measurements at 10.65 GHz and those at 18.7 or 6.925 GHz is first developed using the AMSR-E training data sets under RFI-free conditions. Contamination of AMSR-E measurements at 10.65 GHz is then predicted from the RFI-free measurements at 18.7 or 6.925 GHz using this relationship. It is shown that AMSR-E measurements with the RFI-correction algorithm have better agreement with simulations in a variety of surface conditions.
基金supported by the National Key Research and Development Program of China(Grant Nos.2021YFC2203501,2021YFC2203502,2021YFC2203503,and 2021YFC2203600)the National Natural Science Foundation of China(Grant Nos.12173077,11873082,11803080,and 12003062)+3 种基金the Scientific Instrument Developing Project of the Chinese Academy of Sciences(Grant No.PTYQ2022YZZD01)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instrumentsbudgeted from the Ministry of Finance of China and Administrated by the Chinese Academy of Sciencesthe Chinese Academy of Sciences“Light of West China”Program(Grant No.2021-XBQNXZ-030)。
文摘This study presents a general outline of the Qitai radio telescope(QTT)project.Qitai,the site of the telescope,is a county of Xinjiang Uygur Autonomous Region of China,located in the east Tianshan Mountains at an elevation of about 1800 m.The QTT is a fully steerable,Gregorian-type telescope with a standard parabolic main reflector of 110 m diameter.The QTT has adopted an umbrella support,homology-symmetric lightweight design.The main reflector is active so that the deformation caused by gravity can be corrected.The structural design aims to ultimately allow high-sensitivity observations from 150 MHz up to115 GHz.To satisfy the requirements for early scientific goals,the QTTwill be equipped with ultra-wideband receivers and large field-of-view multi-beam receivers.A multi-function signal-processing system based on RFSo C and GPU processor chips will be developed.These will enable the QTT to operate in pulsar,spectral line,continuum and Very Long Baseline Interferometer(VLBI)observing modes.Electromagnetic compatibility(EMC)and radio frequency interference(RFI)control techniques are adopted throughout the system design.The QTT will form a world-class observational platform for the detection of lowfrequency(nano Hertz)gravitational waves through pulsar timing array(PTA)techniques,pulsar surveys,the discovery of binary black-hole systems,and exploring dark matter and the origin of life in the universe.The QTT will also play an important role in improving the Chinese and international VLBI networks,allowing high-sensitivity and high-resolution observations of the nuclei of distant galaxies and gravitational lensing systems.Deep astrometric observations will also contribute to improving the accuracy of the celestial reference frame.Potentially,the QTT will be able to support future space activities such as planetary exploration in the solar system and to contribute to the search for extraterrestrial intelligence.
基金supported by Hatch funds under project ILLU-538-914,National Institute of Food and Agriculture(Washington,DC)
文摘Background: Residual feed intake(RFI) in dairy cattle typically calculated at peak lactation is a measure of feed efficiency independent of milk production level. The objective of this study was to evaluate differences in ruminal bacteria, biopolymer hydrolyzing enzyme activities, and overall performance between the most-and the leastefficient dairy cows during the peripartal period. Twenty multiparous Holstein dairy cows with daily ad libitum access to a total mixed ration from d-10 to d 60 relative to the calving date were used. Cows were classified into most-efficient(i.e. with low RFI, n = 10) and least-efficient(i.e. with high RFI, n = 10) based on a linear regression model involving dry matter intake(DMI), fat-corrected milk(FCM), changes in body weight(BW), and metabolic BW.Results: The most-efficient cows had ~ 2.6 kg/d lower DMI at wk 4, 6, 7, and 8 compared with the least-efficient cows. In addition, the most-efficient cows had greater relative abundance of total ruminal bacterial community during the peripartal period. Compared with the least-efficient cows, the most-efficient cows had 4-fold greater relative abundance of Succinivibrio dextrinosolvens at d-10 and d 10 around parturition and tended to have greater abundance of Fibrobacter succinogenes and Megaspheara elsdenii. In contrast, the relative abundance of Butyrivibrio proteoclasticus and Streptococcus bovis was lower and Succinimonas amylolytica and Prevotella bryantii tended to be lower in the most-efficient cows around calving. During the peripartal period, the most-efficient cows had lower enzymatic activities of cellulase, amylase, and protease compared with the least-efficient cows.Conclusions: The results suggest that shifts in ruminal bacteria and digestive enzyme activities during the peripartal period could, at least in part, be part of the mechanism associated with better feed efficiency in dairy cows.
文摘Background: Residual feed intake(RFI) describes an animal’s feed efficiency independent of growth performance.The objective of this study was to determine differences in growth performance, carcass traits, major bacteria attached to ruminal solids-fraction, and ruminal epithelium gene expression between the most-efficient and the least-efficient beef cattle. One-hundred and forty-nine Red Angus cattle were allocated to three contemporary groups according to sex and herd origin. Animals were fed a finishing diet in confinement for 70 d to determine the RFI category for each. Within each group, the two most-efficient(n = 6; RFI coefficient =-2.69 ± 0.58 kg dry matter intake(DMI)/d) and the two least-efficient animals(n = 6; RFI coefficient = 3.08 ± 0.55 kg DMI/d) were selected. Immediately after slaughter, ruminal solids-fraction and ruminal epithelium were collected for bacteria relative abundance and epithelial gene expression analyses, respectively, using real-time PCR.Results: The most-efficient animals consumed less feed(P = 0.01; 5.03 kg less DMI/d) compared with the leastefficient animals. No differences(P > 0.10) in initial body weight(BW), final BW, and average daily gain(ADG) were observed between the two RFI classes. There were no significant RFI × sex effects(P > 0.10) on growth performance.Compared with the least-efficient group, hot carcass weight(HCW), ribeye area(REA), and kidney, pelvic, and heart fat(KPH) were greater(P ≤ 0.05) in the most-efficient cattle. No RFI × sex effect(P > 0.10) for carcass traits was detected between RFI groups. Of the 10 bacterial species evaluated, the most-efficient compared with least efficient cattle had greater(P ≤ 0.05) relative abundance of Eubacterium ruminantium, Fibrobacter succinogenes, and Megasphaera elsdenii, and lower(P ≤ 0.05) Succinimonas amylolytica and total bacterial density. No RFI × sex effect on ruminal bacteria was detected between RFI groups. Of the 34 genes evaluated in ruminal epithelium, the mostefficient cattle had greater(P ≤
基金Supported by the National Natural Science Foundation of China(41305033,41275043,and 41175035)Priority Academic Program Development(PAPD)of Jiangsu Higher Education InstitutionNOAA/NESDIS/Center for Satellite Applications and Research(STAR)CalVal Program
文摘Land retrievals using passive microwave radiometers are sensitive to small fluctuations in land brightness temperatures. As such, the radio-frequency interference (RFI) signals emanating from man-made microwave radiation transmitters can result in large errors in land retrievals. RFI in C-and X-band channels can con-taminate remotely sensed measurements, as experienced with the Advanced Microwave Scanning Radiometer (AMSR-E) and the WindSat sensor. In this work, applications of an RFI detection and correction algorithm in retrieving a comprehensive suite of geophysical parameters from AMSR-E measurements using the one-dimensional variational retrieval (1-DVAR) method are described. The results indicate that the values of retrieved parameters, such as land skin temperature (LST), over these areas contaminated by RFI are much higher than those from the global data assimilation system (GDAS) products. The results also indicate that the differences between new retrievals and GDAS products are decreased evidently through taking into account the RFI correction algorithm. In addition, the convergence metric (χ2) of 1-DVAR is found to be a new method for identifying regions where land retrievals are affected by RFI. For example, in those regions with much stronger RFI, such as Europe and Japan, χ2 of 1-DVAR is so large that convergence cannot be reached and retrieval results may not be reliable or cannot be obtained. Furthermore,χ2 also decreases with the RFI-corrected algorithm for those regions with moderate or weak RFI. The results of RFI detected byχ2 are almost consistent with those identified by the spectral difference method.
基金financial support from the High Technology Research and Development Program of China (2013AA102501)the National Key Technology Research and Development Program (2014BAD08B08)the China Agriculture Research System (CARS-41-G03,CARS-41-Z17)
文摘Background: The feed conversion ratio(FCR) and residual feed intake(RFI) are common indexes in measuring feed efficiency for livestock. RFI is a feed intake adjusted for requirements for maintenance and production so these two traits are related. Similarly, FCR is related to feed intake and weight gain because it is their ratio. Cholecystokinin type A receptor(CCKAR) plays an important role in animal digestive process. We examined the interplay of these three parameters in a local Chinese chicken population.Results: The feed intake(FI) and body weights(BW) of 1,841 individuals were monitored on a daily basis from 56 to 105 d of age. There was a strong correlation between RFI and average daily feed intake(ADFI) and a negative correlation between the FCR and daily gain(r=-0.710). Furthermore, we identified 51 single nucleotide polymorphisms(SNPs) in the CCKAR and 4 of these resulted in amino acid mutations. The C334A mutation was specifically associated with FI and the expected feed intake(EFI)(P < 0.01) and significantly associated with the average daily gain(ADG)(P < 0.05). G1290A was significantly associated with FI and EFI(P < 0.05).Conclusion: FCR is apply to weight selecting, and RFI is more appropriate if the breeding focus is feed intake. And C334A and G1290A of the CCKAR gene can be deemed as candidate markers for feed intake and weight gain.