Purpose High energy photon source is a 6 GeV diffraction-limited storage ring light source currently under construction in Beijing.A low-frequency fundamental radio-frequency(rf)system of 166.6 MHz was proposed to acc...Purpose High energy photon source is a 6 GeV diffraction-limited storage ring light source currently under construction in Beijing.A low-frequency fundamental radio-frequency(rf)system of 166.6 MHz was proposed to accommodate the accelerator physics design.Superconducting rf(srf)technologies were chosen for the storage ring rf accompanied by solid-state power amplifiers and digital low-level rf controls.The design of the rf system was completed,and the parameters are frozen.Elucidation of the rf design with key parameters is desired.Methods The requirements from the accelerator physics design will be presented followed by the detailed rf design.The logic behind the choice of key rf parameters is elaborated.The configuration of the entire rf system is presented.Results and conclusions The fundamental srf cavity of 166.6 MHz was designed to accelerate the ultrarelativistic electron beam.Heavy damping of higher-order modes in these cavities is required to avoid the coupled bunch instabilities.An active third harmonic srf of 499.8 MHz was adopted to realize the required rf gymnastics.Normal-conducting 5-cell cavities will be used for the booster rf.Solid-state amplifiers of 2.4 MW in total will be installed at HEPS to drive these cavities in the booster and the storage ring.A digital low-level rf system will be used to regulate rf field inside each cavity with high stabilities.The rf configuration during the commissioning and the operation scenarios are also presented.展开更多
Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source...Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source with two drivers on plasma parameters and RF power transfer efficiency are analyzed.It is found that the same input direction of the current is better for the RF ion source with multiple drivers.The electromagnetic shield(EMS)should be placed symmetrically around the drivers,which is beneficial for the plasma to distribute uniformly and symmetrically in both drivers.Furthermore,the bigger the EMS shield radius is the better generating a higher electron density.These results will be of guiding significance to the design of electromagnetic shielding for RF ion sources with a multi-driver.展开更多
Networks based on backscatter communication provide wireless data transmission in the absence of a power source.A backscatter device receives a radio frequency(RF)source and creates a backscattered signal that deliver...Networks based on backscatter communication provide wireless data transmission in the absence of a power source.A backscatter device receives a radio frequency(RF)source and creates a backscattered signal that delivers data;this enables new services in battery-less domains with massive Internet-of-Things(IoT)devices.Connectivity is highly energy-efficient in the context of massive IoT applications.Outdoors,long-range(LoRa)backscattering facilitates large IoT services.A backscatter network guarantees timeslot-and contention-based transmission.Timeslot-based transmission ensures data transmission,but is not scalable to different numbers of transmission devices.If contention-based transmission is used,collisions are unavoidable.To reduce collisions and increase transmission efficiency,the number of devices transmitting data must be controlled.To control device activation,the RF source range can be modulated by adjusting the RF source power during LoRa backscatter.This reduces the number of transmitting devices,and thus collisions and retransmission,thereby improving transmission efficiency.We performed extensive simulations to evaluate the performance of our method.展开更多
Recent progress in the accelerator structure studies at SLAC is reported. This paper covers the room temperature accelerator structures for the ILC e+/e- sources; RF structures for some photon science projects includi...Recent progress in the accelerator structure studies at SLAC is reported. This paper covers the room temperature accelerator structures for the ILC e+/e- sources; RF structures for some photon science projects including RF deffectors and the LCLS RF gun; the high gradient accelerator R&D in a global CLIC collaboration for the future multi-TeV linear colliders.展开更多
This study presents the RF design of a linear accelerator(linac)operated in single-bunch mode.The accelerator is powered by a compressed RF pulse produced from a SLED-I type RF pulse compressor.The compressed RF pulse...This study presents the RF design of a linear accelerator(linac)operated in single-bunch mode.The accelerator is powered by a compressed RF pulse produced from a SLED-I type RF pulse compressor.The compressed RF pulse has an unflattened shape with a gradient distribution which varies over the structure cells.An analytical study to optimize the accelerating structure together with the RF pulse compressor is performed.The optimization aims to maximize the efficiency by minimizing the required RF power from the generator for a given average accelerating gradient.The study shows that,owing to the compressed RF pulse shape,the constant-impedance structure has a similar efficiency to the optimal structure using varying iris apertures.The constant-impedance structure is easily fabricated and is favorable for the design of a linac with a pulse compressor.We utilize these findings to optimize the RF design of a X-band linac using the constant-impedance accelerating structure for the Tsinghua Thomson X-ray source facility.展开更多
We propose a passive compensation fiber-optic radio frequency(RF) transfer scheme with a nonsynchronized RF stable source during a round-trip time, which can avoid high-precision phase-locking and efficiently suppre...We propose a passive compensation fiber-optic radio frequency(RF) transfer scheme with a nonsynchronized RF stable source during a round-trip time, which can avoid high-precision phase-locking and efficiently suppress the effect of backscattering only using two wavelengths at the same time. A stable frequency signal is directly reproduced by frequency mixing at the remote site. The proposed scheme is validated by the experiment over a 40 km single mode fiber spool using nonsynchronized common commercial RF sources. The influence of the stability of nonsynchronized RF sources on the frequency transfer is investigated over different length fiber links.展开更多
Purpose In order to achieve a high-precision measurement of the incident and the reflected power,a WR1800 rectangular waveguide directional coupler with high directivity and high power level has been in-house developed...Purpose In order to achieve a high-precision measurement of the incident and the reflected power,a WR1800 rectangular waveguide directional coupler with high directivity and high power level has been in-house developed.Multiple couplers will be installed in the 500-MHz high-power radio-frequency transmission lines delivering 200-kW continuous-wave power for the High Energy Photon Source(HEPS).Methods The directional coupler adopts the design scheme of primary and secondary transmission lines and coaxial coupling-head structure.The shape and dimensional parameters of the coupling head were carefully optimized by using microwave simulation codes.An optimum directivity of 64 dB was achieved in simulations.Results and conclusions A prototype coupler was subsequently manufactured,and its directivity was measured to be 48.2 dB following a rigorous calibration procedure,largely exceeding the design goal and the commercial product.The coupler was then connected to an existing 500-MHz klystron system,and a high-power test with short-circuit termination was conducted.The high directivity of the coupler was confirmed up to 200 kW.During the 6 hours of power aging with continuous-wave 200 kW in a standing-wave setup,no performance degradation was observed on the coupler.The coupler temperature was measured to be 20◦C above the ambient environment.The design requirements were comfortably fulfilled.These constitute thefirst in-house development of a large-size waveguide directional coupler with high directivity and high power level for HEPS.The design,fabrication,and performance tests of the directional coupler are presented.展开更多
In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the be...In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.展开更多
In this paper, we propose multi-fin FET design techniques targeted for RF applications. Overlap and underlap design configuration in a base FinFET are compared first and then multi-fin device (consisting of transistor...In this paper, we propose multi-fin FET design techniques targeted for RF applications. Overlap and underlap design configuration in a base FinFET are compared first and then multi-fin device (consisting of transistor unit up to 50) is studied to develop design limitations and to evaluate their effects on the device performance. We have also investigated the impact of the number of fins (up to 50) in multi-fin structure and resulting RF parameters. Our results show that as the number of fin increases, underlap design compromises RF performance and short channel effects. The results provide technical understanding that is necessary to realize new opportunities for RF and analog mixed-signal design with nanoscale FinFETs.展开更多
In this paper, we continue our W-band photoinjector work. We discuss the production of a high brightness femtosecond bunch using our proposed W-band photoinjector under different parameters. The parameters of the prod...In this paper, we continue our W-band photoinjector work. We discuss the production of a high brightness femtosecond bunch using our proposed W-band photoinjector under different parameters. The parameters of the produced bunch are the energy of 1.2 MeV, the length of 60 fs, the peak current of 90 A, the normalized emittance of 0.4 mm mrad and the energy spread of 1.9%. Finally, we present some application examples of the proposed photoinjector.展开更多
A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and p...A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.展开更多
Purpose Digital low-level radio frequency(LLRF)system has been proposed for 166.6 MHz superconducting cavities at High Energy Photon Source.The RF field inside the cavities has to be controlled better than 0.03%(rms)i...Purpose Digital low-level radio frequency(LLRF)system has been proposed for 166.6 MHz superconducting cavities at High Energy Photon Source.The RF field inside the cavities has to be controlled better than 0.03%(rms)in amplitude and 0.03°(rms)in phase.A RF front end system is required to transform the RF signal from the cavity to IF signal before inputting into the digital signal processing(DSP)board,and up-convert the IF signal back to RF to drive the power amplifier.Methods Connectorized off-the-shelf microwave components were used to realize the RF front end system.The local oscillator generation and distribution,choices of main components and design of down-/up-conversion channels have been elaborated in detail with a focus on minimizing nonlinearity and signal interferences among channels with optimized signal distribution loss.Results and conclusions The RF front end has been incorporated with the existing DSP board and tested on a warm 166.6 MHz cavity in the laboratory.Excellent channel isolations and good linearities were achieved on the RF front end system.The RF field inside the cavity was controlled with a residual noise of 0.004%(rms)in amplitude and 0.002°(rms)in phase,well below the HEPS specifications.The sensitivity to ambient environment changes have also been studied and presented in this paper.This demonstrates a first high-performance 166.6 MHz RF front end system and provides valuable insights into HEPS LLRF system development in the future.展开更多
基金supported by High Energy Photon Source(HEPS),a major national science and technology infrastructure in China.Funding was also received from the Chinese Academy of Sciences and the National Natural Science Foundation of China(Grant No.12275285).
文摘Purpose High energy photon source is a 6 GeV diffraction-limited storage ring light source currently under construction in Beijing.A low-frequency fundamental radio-frequency(rf)system of 166.6 MHz was proposed to accommodate the accelerator physics design.Superconducting rf(srf)technologies were chosen for the storage ring rf accompanied by solid-state power amplifiers and digital low-level rf controls.The design of the rf system was completed,and the parameters are frozen.Elucidation of the rf design with key parameters is desired.Methods The requirements from the accelerator physics design will be presented followed by the detailed rf design.The logic behind the choice of key rf parameters is elaborated.The configuration of the entire rf system is presented.Results and conclusions The fundamental srf cavity of 166.6 MHz was designed to accelerate the ultrarelativistic electron beam.Heavy damping of higher-order modes in these cavities is required to avoid the coupled bunch instabilities.An active third harmonic srf of 499.8 MHz was adopted to realize the required rf gymnastics.Normal-conducting 5-cell cavities will be used for the booster rf.Solid-state amplifiers of 2.4 MW in total will be installed at HEPS to drive these cavities in the booster and the storage ring.A digital low-level rf system will be used to regulate rf field inside each cavity with high stabilities.The rf configuration during the commissioning and the operation scenarios are also presented.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)National Natural Science Foundation of China(No.11975263)the National Key R&D Program of China(No.2017YFE0300101)。
文摘Combined with two-dimensional(2D)and three-dimensional(3D)finite element analysis and preliminary experimental tests,the effects of size and placement of the electromagnetic shield of the radio-frequency(RF)ion source with two drivers on plasma parameters and RF power transfer efficiency are analyzed.It is found that the same input direction of the current is better for the RF ion source with multiple drivers.The electromagnetic shield(EMS)should be placed symmetrically around the drivers,which is beneficial for the plasma to distribute uniformly and symmetrically in both drivers.Furthermore,the bigger the EMS shield radius is the better generating a higher electron density.These results will be of guiding significance to the design of electromagnetic shielding for RF ion sources with a multi-driver.
基金the National Research Foundation of Korea(NRF)grant funded by theKoreaGovernment(MSIT)(No.2021R1C1C1013133)Basic ScienceResearch Programthrough the NationalResearch Foundation ofKorea(NRF)funded by the Ministry of Education(NRF-2020R1I1A3066543)the Soonchunhyang University Research Fund.
文摘Networks based on backscatter communication provide wireless data transmission in the absence of a power source.A backscatter device receives a radio frequency(RF)source and creates a backscattered signal that delivers data;this enables new services in battery-less domains with massive Internet-of-Things(IoT)devices.Connectivity is highly energy-efficient in the context of massive IoT applications.Outdoors,long-range(LoRa)backscattering facilitates large IoT services.A backscatter network guarantees timeslot-and contention-based transmission.Timeslot-based transmission ensures data transmission,but is not scalable to different numbers of transmission devices.If contention-based transmission is used,collisions are unavoidable.To reduce collisions and increase transmission efficiency,the number of devices transmitting data must be controlled.To control device activation,the RF source range can be modulated by adjusting the RF source power during LoRa backscatter.This reduces the number of transmitting devices,and thus collisions and retransmission,thereby improving transmission efficiency.We performed extensive simulations to evaluate the performance of our method.
基金Supported by the US Department of Energy (DE-AC02-76SF00515)
文摘Recent progress in the accelerator structure studies at SLAC is reported. This paper covers the room temperature accelerator structures for the ILC e+/e- sources; RF structures for some photon science projects including RF deffectors and the LCLS RF gun; the high gradient accelerator R&D in a global CLIC collaboration for the future multi-TeV linear colliders.
文摘This study presents the RF design of a linear accelerator(linac)operated in single-bunch mode.The accelerator is powered by a compressed RF pulse produced from a SLED-I type RF pulse compressor.The compressed RF pulse has an unflattened shape with a gradient distribution which varies over the structure cells.An analytical study to optimize the accelerating structure together with the RF pulse compressor is performed.The optimization aims to maximize the efficiency by minimizing the required RF power from the generator for a given average accelerating gradient.The study shows that,owing to the compressed RF pulse shape,the constant-impedance structure has a similar efficiency to the optimal structure using varying iris apertures.The constant-impedance structure is easily fabricated and is favorable for the design of a linac with a pulse compressor.We utilize these findings to optimize the RF design of a X-band linac using the constant-impedance accelerating structure for the Tsinghua Thomson X-ray source facility.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61627817 and 61535006)
文摘We propose a passive compensation fiber-optic radio frequency(RF) transfer scheme with a nonsynchronized RF stable source during a round-trip time, which can avoid high-precision phase-locking and efficiently suppress the effect of backscattering only using two wavelengths at the same time. A stable frequency signal is directly reproduced by frequency mixing at the remote site. The proposed scheme is validated by the experiment over a 40 km single mode fiber spool using nonsynchronized common commercial RF sources. The influence of the stability of nonsynchronized RF sources on the frequency transfer is investigated over different length fiber links.
文摘Purpose In order to achieve a high-precision measurement of the incident and the reflected power,a WR1800 rectangular waveguide directional coupler with high directivity and high power level has been in-house developed.Multiple couplers will be installed in the 500-MHz high-power radio-frequency transmission lines delivering 200-kW continuous-wave power for the High Energy Photon Source(HEPS).Methods The directional coupler adopts the design scheme of primary and secondary transmission lines and coaxial coupling-head structure.The shape and dimensional parameters of the coupling head were carefully optimized by using microwave simulation codes.An optimum directivity of 64 dB was achieved in simulations.Results and conclusions A prototype coupler was subsequently manufactured,and its directivity was measured to be 48.2 dB following a rigorous calibration procedure,largely exceeding the design goal and the commercial product.The coupler was then connected to an existing 500-MHz klystron system,and a high-power test with short-circuit termination was conducted.The high directivity of the coupler was confirmed up to 200 kW.During the 6 hours of power aging with continuous-wave 200 kW in a standing-wave setup,no performance degradation was observed on the coupler.The coupler temperature was measured to be 20◦C above the ambient environment.The design requirements were comfortably fulfilled.These constitute thefirst in-house development of a large-size waveguide directional coupler with high directivity and high power level for HEPS.The design,fabrication,and performance tests of the directional coupler are presented.
基金supported by the Comprehensive Research Facility for Fusion Technology Program of China(No.2018-000052-73-01-001228)
文摘In order to understand the physics and pre-study the engineering issues for radio frequency(RF)negative beam source,a prototype source with a single driver and three-electrode accelerator was developed.Recently,the beam source was tested on the RF source test facility with RF plasma generation,negative ion production and extraction.A magnetic filter system and a Cs injection system were employed to enhance the negative ion production.As a result,a long pulse of 105 s negative ion beam with current density of 153 A m-2 was repeatedly extracted successfully.The source pressure is 0.6 Pa and the ratio of co-extracted electron and negative ion current is around0.3.The details of design and experimental results of beam source were shown in this letter.
文摘In this paper, we propose multi-fin FET design techniques targeted for RF applications. Overlap and underlap design configuration in a base FinFET are compared first and then multi-fin device (consisting of transistor unit up to 50) is studied to develop design limitations and to evaluate their effects on the device performance. We have also investigated the impact of the number of fins (up to 50) in multi-fin structure and resulting RF parameters. Our results show that as the number of fin increases, underlap design compromises RF performance and short channel effects. The results provide technical understanding that is necessary to realize new opportunities for RF and analog mixed-signal design with nanoscale FinFETs.
文摘In this paper, we continue our W-band photoinjector work. We discuss the production of a high brightness femtosecond bunch using our proposed W-band photoinjector under different parameters. The parameters of the produced bunch are the energy of 1.2 MeV, the length of 60 fs, the peak current of 90 A, the normalized emittance of 0.4 mm mrad and the energy spread of 1.9%. Finally, we present some application examples of the proposed photoinjector.
基金This work was supported by the National Natural Science Foundation of China(No.11922504).
文摘A 2856-MHz,π-mode,seven-cell standingwave deflecting cavity was designed and fabricated for bunch length measurement in Tsinghua Thomson scattering X-ray source(TTX)facility.This cavity was installed in the TTX and provided a deflecting voltage of 4.2 MV with an input power of 2.5 MW.Bunch length diagnoses of electron beams with energies up to 39 MeV have been performed.In this article,the RF design of the cavity using HFSS,fabrication,and RF test processes are reviewed.High-power operation with accelerated beams and calibration of the deflecting voltage are also presented.
基金supported by the High Energy Photon Source-Test Facility(HEPS-TF)projectPioneer"Hundred Talents Program of Chinese Academy of Sciences
文摘Purpose Digital low-level radio frequency(LLRF)system has been proposed for 166.6 MHz superconducting cavities at High Energy Photon Source.The RF field inside the cavities has to be controlled better than 0.03%(rms)in amplitude and 0.03°(rms)in phase.A RF front end system is required to transform the RF signal from the cavity to IF signal before inputting into the digital signal processing(DSP)board,and up-convert the IF signal back to RF to drive the power amplifier.Methods Connectorized off-the-shelf microwave components were used to realize the RF front end system.The local oscillator generation and distribution,choices of main components and design of down-/up-conversion channels have been elaborated in detail with a focus on minimizing nonlinearity and signal interferences among channels with optimized signal distribution loss.Results and conclusions The RF front end has been incorporated with the existing DSP board and tested on a warm 166.6 MHz cavity in the laboratory.Excellent channel isolations and good linearities were achieved on the RF front end system.The RF field inside the cavity was controlled with a residual noise of 0.004%(rms)in amplitude and 0.002°(rms)in phase,well below the HEPS specifications.The sensitivity to ambient environment changes have also been studied and presented in this paper.This demonstrates a first high-performance 166.6 MHz RF front end system and provides valuable insights into HEPS LLRF system development in the future.