A novel scalable model of substrate components for deep n-well (DNW) RF MOSFETs with different number of fingers is presented for the first time. The test structure developed in [1] is employed to directly access the ...A novel scalable model of substrate components for deep n-well (DNW) RF MOSFETs with different number of fingers is presented for the first time. The test structure developed in [1] is employed to directly access the characteristics of the substrate to extract the different substrate components. A methodology is developed to directly extract the parameters for the substrate network from the measured data. By using the measured two-port data of a set of nMOSFETs with different number of fingers, with the DNW in grounded and float configuration, respectively, the parameters of the scalable substrate model are obtained. The method and the substrate model are further verified and validated by matching the measured and simulated output admittances. Excellent agreement up to 40 GHz for configurations in common-source has been achieved.展开更多
A novel scalable model for multi-finger RF MOSFETs modeling is presented.All the parasitic components, including gate resistance,substrate resistance and wiring capacitance,are directly determined from the layout.This...A novel scalable model for multi-finger RF MOSFETs modeling is presented.All the parasitic components, including gate resistance,substrate resistance and wiring capacitance,are directly determined from the layout.This model is further verified using a standard 0.13μm RF CMOS process with nMOSFETs of different numbers of gate fingers,with the per gate width fixed at 2.5μm and the gate length at 0.13μm.Excellent agreement between measured and simulated S-parameters from 100 MHz to 20 GHz demonstrate the validity of this model.展开更多
This work presents a comparative study of the influence of various parameters on the analog and RF properties of silicon-nanotube MOSFETs and nanowire-based gate-all-around(GAA) MOSFETs.The important analog and RF p...This work presents a comparative study of the influence of various parameters on the analog and RF properties of silicon-nanotube MOSFETs and nanowire-based gate-all-around(GAA) MOSFETs.The important analog and RF performance parameters of SiNT FETs and GAA MOSFETs,namely drain current(/d),transconductance to drain current ratio(g_m/I_d),I_(on)/I_(off),the cut-off frequency(f_T) and the maximum frequency of oscillation(/max) are evaluated with the help of Y- and H-parameters which are obtained from a 3-D device simulator,ATLAS^(TM).It is found that the silicon-nanotube MOSFETs have far more superior analog and RF characteristics(g_m/I_d,f_T and /max) compared to the nanowire-based gate-all-around GAA MOSFETs.The silicon-nanotube MOSFET shows an improvement of ~2.5 and 3 times in the case of f_T and /max values respectively compared with the nanowire-based gate-all-around(GAA) MOSFET.展开更多
A novel empirical model for large-signal modeling of an RF-MOSFET is proposed. The proposed model is validated in the DC, AC, small-signal and large-signal characteristics of a 32-finger nMOSFET fabricated in SMIC's ...A novel empirical model for large-signal modeling of an RF-MOSFET is proposed. The proposed model is validated in the DC, AC, small-signal and large-signal characteristics of a 32-finger nMOSFET fabricated in SMIC's 0.18 μm RF CMOS technology. The power dissipation caused by self-heating is described. Excellent agreement is achieved between simulation and measurement for DC, S-parameters (50 MHz-40 GHz), and power characteristics, which shows that our model is accurate and reliable.展开更多
文摘A novel scalable model of substrate components for deep n-well (DNW) RF MOSFETs with different number of fingers is presented for the first time. The test structure developed in [1] is employed to directly access the characteristics of the substrate to extract the different substrate components. A methodology is developed to directly extract the parameters for the substrate network from the measured data. By using the measured two-port data of a set of nMOSFETs with different number of fingers, with the DNW in grounded and float configuration, respectively, the parameters of the scalable substrate model are obtained. The method and the substrate model are further verified and validated by matching the measured and simulated output admittances. Excellent agreement up to 40 GHz for configurations in common-source has been achieved.
基金Project supported by the National Natural Science Foundation of China(No.60706002)the Scientific and Technologic Cooperation Foundation of the Yangtze River Delta Area of China(Nos.08515810103,2008C16017)
文摘A novel scalable model for multi-finger RF MOSFETs modeling is presented.All the parasitic components, including gate resistance,substrate resistance and wiring capacitance,are directly determined from the layout.This model is further verified using a standard 0.13μm RF CMOS process with nMOSFETs of different numbers of gate fingers,with the per gate width fixed at 2.5μm and the gate length at 0.13μm.Excellent agreement between measured and simulated S-parameters from 100 MHz to 20 GHz demonstrate the validity of this model.
基金supported by the Defence Research and Development Organisation(DRDO),Ministry of Defence,Govt.of India(No.CC/TM/ERIPR/GIA/1516/020)
文摘This work presents a comparative study of the influence of various parameters on the analog and RF properties of silicon-nanotube MOSFETs and nanowire-based gate-all-around(GAA) MOSFETs.The important analog and RF performance parameters of SiNT FETs and GAA MOSFETs,namely drain current(/d),transconductance to drain current ratio(g_m/I_d),I_(on)/I_(off),the cut-off frequency(f_T) and the maximum frequency of oscillation(/max) are evaluated with the help of Y- and H-parameters which are obtained from a 3-D device simulator,ATLAS^(TM).It is found that the silicon-nanotube MOSFETs have far more superior analog and RF characteristics(g_m/I_d,f_T and /max) compared to the nanowire-based gate-all-around GAA MOSFETs.The silicon-nanotube MOSFET shows an improvement of ~2.5 and 3 times in the case of f_T and /max values respectively compared with the nanowire-based gate-all-around(GAA) MOSFET.
基金supported by the National Natural Science Foundation of China(No.60706002)the Scientific and Technologic Cooperation Foundation of Yangtze River Delta Area of China(Nos.08515810103,2008C16017).
文摘A novel empirical model for large-signal modeling of an RF-MOSFET is proposed. The proposed model is validated in the DC, AC, small-signal and large-signal characteristics of a 32-finger nMOSFET fabricated in SMIC's 0.18 μm RF CMOS technology. The power dissipation caused by self-heating is described. Excellent agreement is achieved between simulation and measurement for DC, S-parameters (50 MHz-40 GHz), and power characteristics, which shows that our model is accurate and reliable.