期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Keypoint RCNN改进模型的物体抓取检测算法
被引量:
11
1
作者
夏浩宇
索双富
+2 位作者
王洋
安琪
张妙恬
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第4期236-246,共11页
机器人抓取在工业中的应用有两个难点:如何准确地检测可抓取物体,以及如何从检测出的多个物体中选择最优抓取目标。本文在Keypoint RCNN模型中引入同方差不确定性学习各损失的权重,并在特征提取器中加入注意力模块,构成了Keypoint RCNN...
机器人抓取在工业中的应用有两个难点:如何准确地检测可抓取物体,以及如何从检测出的多个物体中选择最优抓取目标。本文在Keypoint RCNN模型中引入同方差不确定性学习各损失的权重,并在特征提取器中加入注意力模块,构成了Keypoint RCNN改进模型。基于改进模型提出了两阶段物体抓取检测算法,第一阶段用模型预测物体掩码和关键点,第二阶段用掩码和关键点计算物体的抓取描述和重合度,重合度表示抓取时的碰撞程度,根据重合度可以从多个可抓取物体中选择最优抓取目标。对照实验证明,相较原模型,Keypoint RCNN改进模型在目标检测、实例分割、关键点检测上的性能均有提高,在自建数据集上的平均精度分别为85.15%、79.66%、86.63%,机器人抓取实验证明抓取检测算法能够准确计算物体的抓取描述、选择最优抓取,引导机器人无碰撞地抓取目标。
展开更多
关键词
抓取检测
Keypoint
rcnn
改进
模型
损失权重
注意力模块
抓取描述
重合度
最优抓取
下载PDF
职称材料
题名
基于Keypoint RCNN改进模型的物体抓取检测算法
被引量:
11
1
作者
夏浩宇
索双富
王洋
安琪
张妙恬
机构
清华大学机械工程系
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021年第4期236-246,共11页
基金
国家重点研发计划(2017YYF0108101)项目资助。
文摘
机器人抓取在工业中的应用有两个难点:如何准确地检测可抓取物体,以及如何从检测出的多个物体中选择最优抓取目标。本文在Keypoint RCNN模型中引入同方差不确定性学习各损失的权重,并在特征提取器中加入注意力模块,构成了Keypoint RCNN改进模型。基于改进模型提出了两阶段物体抓取检测算法,第一阶段用模型预测物体掩码和关键点,第二阶段用掩码和关键点计算物体的抓取描述和重合度,重合度表示抓取时的碰撞程度,根据重合度可以从多个可抓取物体中选择最优抓取目标。对照实验证明,相较原模型,Keypoint RCNN改进模型在目标检测、实例分割、关键点检测上的性能均有提高,在自建数据集上的平均精度分别为85.15%、79.66%、86.63%,机器人抓取实验证明抓取检测算法能够准确计算物体的抓取描述、选择最优抓取,引导机器人无碰撞地抓取目标。
关键词
抓取检测
Keypoint
rcnn
改进
模型
损失权重
注意力模块
抓取描述
重合度
最优抓取
Keywords
grasp detection
improved Keypoint
rcnn
model
weight of loss
attention module
grasp representation
overlap rate
optimized grasp
分类号
TP391 [自动化与计算机技术—计算机应用技术]
TH74 [自动化与计算机技术—计算机科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于Keypoint RCNN改进模型的物体抓取检测算法
夏浩宇
索双富
王洋
安琪
张妙恬
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2021
11
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部