阐述径向基函数(radial base function,RBF)神经网络的基本原理和算法,将其应用于齿轮箱故障诊断与识别,建立齿轮箱的BRF故障诊断模型,并与BP(back propagation)神经网络、学习率自适应BP神经网络进行对比分析研究。结果表明,RBF神经网...阐述径向基函数(radial base function,RBF)神经网络的基本原理和算法,将其应用于齿轮箱故障诊断与识别,建立齿轮箱的BRF故障诊断模型,并与BP(back propagation)神经网络、学习率自适应BP神经网络进行对比分析研究。结果表明,RBF神经网络性能优于BP神经网络,具有较快的训练速度、较强的非线性映射能力和精度较高的故障识别能力,非常适用于齿轮箱的状态监测和故障诊断。但在具体应用中应当注意,RBF网络的训练样本必须含有一定的噪声,以提高网络的容噪性能;各类故障的训练样本数不能太少,否则RBF网络的故障分类能力很差。展开更多
文摘阐述径向基函数(radial base function,RBF)神经网络的基本原理和算法,将其应用于齿轮箱故障诊断与识别,建立齿轮箱的BRF故障诊断模型,并与BP(back propagation)神经网络、学习率自适应BP神经网络进行对比分析研究。结果表明,RBF神经网络性能优于BP神经网络,具有较快的训练速度、较强的非线性映射能力和精度较高的故障识别能力,非常适用于齿轮箱的状态监测和故障诊断。但在具体应用中应当注意,RBF网络的训练样本必须含有一定的噪声,以提高网络的容噪性能;各类故障的训练样本数不能太少,否则RBF网络的故障分类能力很差。