对以自主设计的向心透平为膨胀机的有机朗肯循环低品位热能发电系统进行实验研究,结果表明:蒸发器的火用损失都是最大的,其次是冷凝器和向心透平,透平入口压力0.397 MPa、入口温度100.58℃时,蒸发器火用损失为3.81 k W,占总火用损失50.6...对以自主设计的向心透平为膨胀机的有机朗肯循环低品位热能发电系统进行实验研究,结果表明:蒸发器的火用损失都是最大的,其次是冷凝器和向心透平,透平入口压力0.397 MPa、入口温度100.58℃时,蒸发器火用损失为3.81 k W,占总火用损失50.64%,冷凝器和透平火用损失为2.88和0.82 k W,分别占38.25%和10.89%.在实验基础上,用Aspen7.3模拟增加回热器对系统性能的影响,结果显示:热源温度和蒸发温度不变时,有回热器的ORC系统热力性能优于基本ORC系统.展开更多
优化设计并搭建了基于预热器的、可回收膨胀后高温乏汽的小型车载有机朗肯循环(ORC)余热发电系统。利用热力学第一定律和第二定律对小型车载ORC余热发电系统进行了热力学分析和能量计算。以R123为工质,热源温度为300℃,在工质流量、压...优化设计并搭建了基于预热器的、可回收膨胀后高温乏汽的小型车载有机朗肯循环(ORC)余热发电系统。利用热力学第一定律和第二定律对小型车载ORC余热发电系统进行了热力学分析和能量计算。以R123为工质,热源温度为300℃,在工质流量、压力等给定的工况下,计算系统在有无预热器的情况下各设备的热效率和系统总热效率。经计算,系统在有无预热器的情况下的总热效率分别为23.1%、10.8%,蒸发器的换热量分别为7.35 k J、4.67 k J。研究结果表明:相对于没有预热器的传统ORC系统,加了预热器的ORC系统的热效率和蒸发器的换热量都有较大的提升。展开更多
Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123,...Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.展开更多
In the present study,the thermodynamic and economic performance of a combined thermodynamic cycle formed by an ORC and a Kalina cycle,which can simultaneously recover waste heat of exhaust gas and cooling water of mar...In the present study,the thermodynamic and economic performance of a combined thermodynamic cycle formed by an ORC and a Kalina cycle,which can simultaneously recover waste heat of exhaust gas and cooling water of marine engine,has been analyzed.Two typical marine engines are selected to be the waste heat source.Six economic indicators are used to analyze the economic performance of this combined thermodynamic cycle system with different marine engine load and under practical comprehensive operating condition of marine engine.The results of the present study show that the combined thermodynamic cycle system with R123 as organic working fluid has the best performance.The system with cis-butene has the worst economic performance.Under practical comprehensive operating conditions of ships,R123 has the shortest Payback Periods,which are 8.51 years and 8.14 years for 8 S70 ME-C10.5 engine and 5G95 ME-C10.5 engine,respectively.Correspondingly,payback Periods of Cyclopentane are 11.95 years and 11.90 years.The above values are much shorter than 25 years which are the lifetime of a marine ship.Under practical comprehensive operating conditions of ships,the combined cycle system can provide output power which is at least equivalent to 25%of engine power.Considering that R123 will be phased out in near future,cyclopentane may be its good successor.Cyclopentane can be used safely by correct handling and installing according to manufacturer's instructions.展开更多
Vapor-liquid two phase flow behavior of R123 inside herringbone microfin tubes has been studied. Herringbone microfin tube is a kind of internally finned tube in which microfins are installed inside the tube where the...Vapor-liquid two phase flow behavior of R123 inside herringbone microfin tubes has been studied. Herringbone microfin tube is a kind of internally finned tube in which microfins are installed inside the tube where the microfins form multi-V-shape in flow direction. For the present experiment three different types of herringbone microfin tubes with helix angle B = 8, 14 and 28 are used. Experimental observations showed how flow diverges and converges inside herringbone microfin tube due to fin arrangement. The effect is more remarkable for larger helix angle. From the measurements of the cross-sectional liquid flow rate distribution, the liquid removal and collection and the entrained droplet are discussed. Quantity of liquid droplets is increased with increase of helix angle. The tube with helix angle B = 28 shows higher quantity of liquid droplets than others.展开更多
文摘对以自主设计的向心透平为膨胀机的有机朗肯循环低品位热能发电系统进行实验研究,结果表明:蒸发器的火用损失都是最大的,其次是冷凝器和向心透平,透平入口压力0.397 MPa、入口温度100.58℃时,蒸发器火用损失为3.81 k W,占总火用损失50.64%,冷凝器和透平火用损失为2.88和0.82 k W,分别占38.25%和10.89%.在实验基础上,用Aspen7.3模拟增加回热器对系统性能的影响,结果显示:热源温度和蒸发温度不变时,有回热器的ORC系统热力性能优于基本ORC系统.
文摘优化设计并搭建了基于预热器的、可回收膨胀后高温乏汽的小型车载有机朗肯循环(ORC)余热发电系统。利用热力学第一定律和第二定律对小型车载ORC余热发电系统进行了热力学分析和能量计算。以R123为工质,热源温度为300℃,在工质流量、压力等给定的工况下,计算系统在有无预热器的情况下各设备的热效率和系统总热效率。经计算,系统在有无预热器的情况下的总热效率分别为23.1%、10.8%,蒸发器的换热量分别为7.35 k J、4.67 k J。研究结果表明:相对于没有预热器的传统ORC系统,加了预热器的ORC系统的热效率和蒸发器的换热量都有较大的提升。
基金Project(2009GK2009) supported by Science and Technology Department Funds of Hunan Province,ChinaProject(08C26224302178) supported by Innovation Fund for Technology Based Firms of China
文摘Taking the ratio of heat transfer area to net power and heat recovery efficiency into account, a multi-objective mathematical model was developed for organic Rankine cycle (ORC). Working fluids considered were R123, R134a, R141b, R227ea and R245fa. Under the given conditions, the parameters including evaporating and condensing pressures, working fluid and cooling water velocities were optimized by simulated annealing algorithm. The results show that the optimal evaporating pressure increases with the heat source temperature increasing. Compared with other working fluids, R123 is the best choice for the temperature range of 100--180℃ and R141 b shows better performance when the temperature is higher than 180 ℃. Economic characteristic of system decreases rapidly with the decrease of heat source temperature. ORC system is uneconomical for the heat source temperature lower than 100℃.
基金funded by the National Natural Science Foundation of China(Grant No.51506001)Beijing Municipal Education Commission(KM201710005029)。
文摘In the present study,the thermodynamic and economic performance of a combined thermodynamic cycle formed by an ORC and a Kalina cycle,which can simultaneously recover waste heat of exhaust gas and cooling water of marine engine,has been analyzed.Two typical marine engines are selected to be the waste heat source.Six economic indicators are used to analyze the economic performance of this combined thermodynamic cycle system with different marine engine load and under practical comprehensive operating condition of marine engine.The results of the present study show that the combined thermodynamic cycle system with R123 as organic working fluid has the best performance.The system with cis-butene has the worst economic performance.Under practical comprehensive operating conditions of ships,R123 has the shortest Payback Periods,which are 8.51 years and 8.14 years for 8 S70 ME-C10.5 engine and 5G95 ME-C10.5 engine,respectively.Correspondingly,payback Periods of Cyclopentane are 11.95 years and 11.90 years.The above values are much shorter than 25 years which are the lifetime of a marine ship.Under practical comprehensive operating conditions of ships,the combined cycle system can provide output power which is at least equivalent to 25%of engine power.Considering that R123 will be phased out in near future,cyclopentane may be its good successor.Cyclopentane can be used safely by correct handling and installing according to manufacturer's instructions.
文摘Vapor-liquid two phase flow behavior of R123 inside herringbone microfin tubes has been studied. Herringbone microfin tube is a kind of internally finned tube in which microfins are installed inside the tube where the microfins form multi-V-shape in flow direction. For the present experiment three different types of herringbone microfin tubes with helix angle B = 8, 14 and 28 are used. Experimental observations showed how flow diverges and converges inside herringbone microfin tube due to fin arrangement. The effect is more remarkable for larger helix angle. From the measurements of the cross-sectional liquid flow rate distribution, the liquid removal and collection and the entrained droplet are discussed. Quantity of liquid droplets is increased with increase of helix angle. The tube with helix angle B = 28 shows higher quantity of liquid droplets than others.