The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:v′(t)=∫t0(t-s)α-2/Γ(α-1)Av(s)ds+∫+∞-∞e-|τ|f(u(t-τ))dτ,(1)v(0)=u0∈X,(2)where 1 <...The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:v′(t)=∫t0(t-s)α-2/Γ(α-1)Av(s)ds+∫+∞-∞e-|τ|f(u(t-τ))dτ,(1)v(0)=u0∈X,(2)where 1 <α <2, A:D(A)X→X is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem(1) and(2) has a unique S-asymptoticallyω-periodic solution if the function f satisfies Lipshcitz condition.展开更多
文摘The aim of this paper is to study the S-asymptotically ω-periodic solutions of R-L fractional derivative-integral equation:v′(t)=∫t0(t-s)α-2/Γ(α-1)Av(s)ds+∫+∞-∞e-|τ|f(u(t-τ))dτ,(1)v(0)=u0∈X,(2)where 1 <α <2, A:D(A)X→X is a linear densely defined operator of sectorial type on a completed Banach space X, f is a continuous function satisfying a suitable Lipschitz type condition. We will use the contraction mapping theory to prove problem(1) and(2) has a unique S-asymptoticallyω-periodic solution if the function f satisfies Lipshcitz condition.