期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
Faster R-CNN模型在车辆检测中的应用 被引量:62
1
作者 王林 张鹤鹤 《计算机应用》 CSCD 北大核心 2018年第3期666-670,共5页
针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入... 针对传统机器学习方法在车辆检测应用中易受光照、目标尺度和图像质量等因素影响,效率低下且泛化能力较差的问题,提出一种基于改进的较快的基于区域卷积神经网络(R-CNN)模型的车辆检测方法。该方法以Faster R-CNN模型为基础,通过对输入图像进行卷积和池化等操作提取车辆特征,结合多尺度训练和难负样本挖掘策略降低复杂环境的影响,利用KITTI数据集对深度神经网络模型进行训练,并采集实际场景中的图像进行测试。仿真实验中,在保证检测时间的情况下,相对原Faster R-CNN算法检测精确度提高了约8%。实验结果表明,所提方法能够自动地提取车辆特征,解决了传统方法提取特征费时费力的问题,同时提高了车辆检测精确度,具有良好的泛化能力和适用范围。 展开更多
关键词 车辆检测 FASTEr r-cnn模型 区域建议网络 难负样本挖掘 KITTI数据集
下载PDF
基于改进Mask R-CNN模型的电力场景目标检测方法 被引量:22
2
作者 孔英会 王维维 +1 位作者 张珂 戚银城 《科学技术与工程》 北大核心 2020年第8期3134-3142,共9页
为了解决电力施工现场中安全帽佩戴情况以及危险区域行人入侵检测问题,提出一种基于改进Mask R-CNN模型的目标检测方法。首先依据迁移学习策略对Mask R-CNN主干网络进行参数初始化,以提取图像基本特征;然后引入特征金字塔结构进行自下... 为了解决电力施工现场中安全帽佩戴情况以及危险区域行人入侵检测问题,提出一种基于改进Mask R-CNN模型的目标检测方法。首先依据迁移学习策略对Mask R-CNN主干网络进行参数初始化,以提取图像基本特征;然后引入特征金字塔结构进行自下而上的特征图提取,完成多尺度特征融合;接着,通过多尺度变换方法对区域推荐网络进行调整,获取锚点进行回归计算完成检测实验;最终对结果进行分析评价,多目标平均准确率达到了95.22%。将改进后的Mask R-CNN模型用于监控视频分析,针对监控视频像素过低问题,加入拉普拉斯算法锐化边缘,精准率提高到90.9%,验证了拉普拉斯算法对低质量监控视频检测的有效性。 展开更多
关键词 MASK r-cnn模型 电力施工现场 目标检测 特征金字塔 区域推荐网络
下载PDF
结合Faster R-CNN模型的遥感影像建筑物检测 被引量:13
3
作者 李东子 范大昭 苏亚龙 《测绘科学技术学报》 CSCD 北大核心 2018年第4期389-394,共6页
高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建... 高分辨率遥感影像场景复杂,其中建筑物目标种类结构各异且存在大量遮挡,现有检测算法使用特征表达性不强。结合Faster R-CNN模型设计一种针对遥感影像的建筑物检测方法。首先通过共享卷积网络获取原始影像的深层特征图;然后结合区域建议网络生成初步检测结果;最后根据Fast R-CNN检测网络对结果进行进一步判定和边界回归。针对困难样本造成的训练中断,对训练策略进行改进,通过近似联合训练的方法对模型参数同步调优。实验结果表明,该方法准确率和召回率明显优于DPM方法,对非训练测试集遥感影像具有较好鲁棒性,有效实现了针对遥感影像的建筑物检测。 展开更多
关键词 遥感影像 建筑物检测 FASTEr r-cnn模型 区域建议网络 近似联合训练
下载PDF
基于注意力机制和Faster R-CNN深度学习的海洋目标识别模型 被引量:9
4
作者 文莉莉 孙苗 邬满 《大连海洋大学学报》 CAS CSCD 北大核心 2021年第5期859-865,共7页
为进一步提升对复杂海洋目标的检测能力,引入自适应尺度的注意力机制,提出一种适应多尺度复杂海洋目标的改进Faster R-CNN模型,该模型通过将卷积网络与SKNet网络相结合,增强模型的特征提取能力与特征有效性,并针对船舶、蚝排、红树林、... 为进一步提升对复杂海洋目标的检测能力,引入自适应尺度的注意力机制,提出一种适应多尺度复杂海洋目标的改进Faster R-CNN模型,该模型通过将卷积网络与SKNet网络相结合,增强模型的特征提取能力与特征有效性,并针对船舶、蚝排、红树林、海岸线4类典型海洋目标,利用91卫图助手与无人机高清影像建立了12000张样本库,分别基于改进的Faster R-CNN模型与原模型进行对比测试试验。结果表明:改进的模型虽然略微增加了计算量,但其特征提取能力与目标检测能力明显强于原模型,整体识别准确率为87.1%;在4类典型海洋目标中,船舶的识别准确率最高,可达94.4%,而红树林由于其特征比较复杂,边界不明显,其整体识别准确率为75.1%。研究表明,引入SKNet网络的Faster R-CNN网络模型,不仅增强了模型对多尺度复杂目标的特征提取能力,更适用于对复杂海洋目标的检测与识别。 展开更多
关键词 注意力机制 SENet模型 SKNet模型 区域候选网络 Faster r-cnn模型 目标检测 深度学习
下载PDF
深度网络自适应优化的Mask R-CNN模型在铸件表面缺陷检测中的应用研究 被引量:7
5
作者 马宇超 付华良 +4 位作者 吴鹏 陈信华 王鼎 陈帅 曹晨雨 《现代制造工程》 CSCD 北大核心 2022年第4期112-118,共7页
针对传统铸件表面缺陷检测方法不能进行分类检测、检测效率低以及检测精度低等问题,提出了一种深度网络自适应优化的Mask R-CNN模型,将其应用于铸件表面缺陷检测中,实现缺陷的精确识别和分类。选择裂纹、气孔和缩松3种常见缺陷作为研究... 针对传统铸件表面缺陷检测方法不能进行分类检测、检测效率低以及检测精度低等问题,提出了一种深度网络自适应优化的Mask R-CNN模型,将其应用于铸件表面缺陷检测中,实现缺陷的精确识别和分类。选择裂纹、气孔和缩松3种常见缺陷作为研究对象,使用Labelme图像标注工具对铸件表面缺陷图像进行了标注,生成数据集。同时,运用PyTorch深度学习框架搭建Mask R-CNN模型,利用深度迁移学习的网络自适应策略优化模型的泛化能力。通过主干特征提取网络对输入的图形数据进行全图特征提取;采用区域建议网络(Regional Proposal Network,RPN)生成区域建议框;利用RoI Align获取感兴趣区域,通过分类、回归网络分别进行分类、回归,同时进行掩膜生成;在铸件表面缺陷检测平台上进行验证实验,并与其他深度学习检测方法进行对比。实验结果表明,优化后的Mask R-CNN模型整体性能优于原Mask R-CNN模型、Faster R-CNN模型和YOLO v3模型,能准确检测出常见的铸件表面缺陷,平均检测精度mAP达到92%,对铸件表面缺陷检测领域有较好的研究应用价值。 展开更多
关键词 缺陷检测 深度学习 Mask r-cnn模型 迁移学习 深度网络自适应
下载PDF
一种基于改进实例分割模型的路面裂缝检测方法 被引量:4
6
作者 肖力炀 李伟 +3 位作者 袁博 崔逸群 高荣 王文庆 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2023年第5期765-776,共12页
为了解决现有裂缝识别算法准确度不高、检测与分割任务不能同时进行等问题,提出了一种基于改进型Mask R-CNN模型的路面裂缝识别方法。首先,建立裂缝数据集并进行标注,然后使用Mask R-CNN模型对裂缝数据集进行训练和测试,并对模型中锚点... 为了解决现有裂缝识别算法准确度不高、检测与分割任务不能同时进行等问题,提出了一种基于改进型Mask R-CNN模型的路面裂缝识别方法。首先,建立裂缝数据集并进行标注,然后使用Mask R-CNN模型对裂缝数据集进行训练和测试,并对模型中锚点的长宽比进行调整,实现在裂缝定位的同时对生成的检测框内的裂缝像素进行分割;其次,针对Mask R-CNN模型生成的裂缝检测框不精准的问题,设计了C-Mask R-CNN多阈值检测方法,通过结合级联不同阈值的检测器来提高候选框质量,实现高阈值检测下的裂缝精准定位;最后,对改进后的模型进行一系列的优化参数和实验对比,并验证所提模型的有效性。实验结果表明,C-Mask R-CNN模型检测部分的平均准确率均值(mean average precision,mAP)达到0.954,与改进前模型相比提升了9.7%,分割部分的mAP达到0.935,与改进前相比提升了13.0%,识别效果较好。综上所述,C-Mask R-CNN模型可以较为完整地对裂缝进行定位及提取,识别精度较高。 展开更多
关键词 路面裂缝识别 深度学习 Mask r-cnn模型 级联阈值检测器 道路工程
原文传递
基于Cascade R-CNN的玉米幼苗检测 被引量:3
7
作者 胡文泽 王宝聚 +3 位作者 耿丽杰 兰玉彬 李文华 李东升 《农机化研究》 北大核心 2023年第5期26-31,共6页
准确识别玉米幼苗是实现自动化精准除草、间苗、补种等苗期作业的重要前提。为此,针对自然环境下农业机器人对玉米幼苗的检测问题,结合深度残差网络强大的特征提取能力和级联网络连接多个检测器不断优化预测结果的特点,对Cascade R-CNN... 准确识别玉米幼苗是实现自动化精准除草、间苗、补种等苗期作业的重要前提。为此,针对自然环境下农业机器人对玉米幼苗的检测问题,结合深度残差网络强大的特征提取能力和级联网络连接多个检测器不断优化预测结果的特点,对Cascade R-CNN模型进行改进,使之适用于自然环境下玉米幼苗的检测。模型使用残差网络ResNet-50与特征金字塔网络FPN作为特征提取器提取玉米幼苗图像的特征图,利用区域建议网络生成目标候选框,通过感兴趣区域池化将不同大小的特征图转换为统一尺寸的输出;最后,分类回归模块根据特征图对目标进行分类,并使用边框回归修正候选框的位置和大小,从而完成玉米幼苗目标检测。同时,以3~5叶期玉米幼苗为研究对象,采集其田间图像并制作数据集,用所制作的数据集对Cascade R-CNN模型进行训练,选取AlexNet、VGG16、ResNet18、ResNet50与ResNet50+FPN分别作为特征提取网络进行对比试验,确定所提出的ResNet50+FPN为最优特征提取网络,平均精度均值(mAP)为91.76%,平均检测时间为6.5ms。选取双阶段目标检测模型Faster R-CNN、R-FCN、CoupleNet与以ResNet50+FPN为特征提取网络的Cascade R-CNN进行对比实验,结果表明:Cascade R-CNN模型检测效果最佳、速度最快,且能对自然环境下的玉米幼苗进行有效检测,可为玉米苗期自动化精准作业提供技术支持。 展开更多
关键词 目标检测 Cascade r-cnn模型 特征提取网络 残差网络 玉米幼苗
下载PDF
基于Mask R-CNN模型的铁路隧道衬砌机制砂混凝土裂缝视觉检测
8
作者 蒋志超 贺兆鹏 《无损检测》 CAS 2024年第6期60-65,共6页
铁路隧道衬砌结构裂缝图像具有复杂的灰度分布和变化特征,局部和全局的多特征信息会干扰跟踪方向和边界跟踪参数,模型可扩展性受限,检测准确率较低。为此,提出基于Mask R-CNN模型的铁路隧道衬砌机制砂混凝土裂缝视觉检测方法。首先输入... 铁路隧道衬砌结构裂缝图像具有复杂的灰度分布和变化特征,局部和全局的多特征信息会干扰跟踪方向和边界跟踪参数,模型可扩展性受限,检测准确率较低。为此,提出基于Mask R-CNN模型的铁路隧道衬砌机制砂混凝土裂缝视觉检测方法。首先输入分段线性变换后的砂混凝土裂缝图像,抽取阈值,生成连通域标识,再以像素点为背景点,在Mask R-CNN模型中,同时检测裂缝区域的位置和标记像素级的边缘掩膜,判定裂缝边界起点与裂缝宽度;然后进行累加视觉检测方法设计,按照裂缝的几何特征以及排序结果,求解裂缝长度,获得完整的裂缝轮廓。试验结果表明,所提方法可以较为完整地检测所有关键位置,裂缝参数信息检测准确率较高;迭代次数升高后,检测结果受到的影响较小,可扩展性得到了改善,可适应任务需求,具有较好的应用价值。 展开更多
关键词 Mask r-cnn模型 铁路隧道 衬砌机制 砂混凝土裂缝 视觉检测
下载PDF
基于Mask R-CNN的电力关键设备运行状态检测
9
作者 吕超 杨德宇 +1 位作者 刘文杰 张克胜 《电子设计工程》 2024年第2期107-110,115,共5页
为判断电力关键设备两端负载电压与干路总电压之间的数值关系,提出基于Mask R-CNN的电力关键设备运行状态检测方法。在Mask R-CNN网络结构中,判断电量信号的时域范围与频域范围。然后根据负荷阻抗特征计算交流参数的取值结果,再联合已... 为判断电力关键设备两端负载电压与干路总电压之间的数值关系,提出基于Mask R-CNN的电力关键设备运行状态检测方法。在Mask R-CNN网络结构中,判断电量信号的时域范围与频域范围。然后根据负荷阻抗特征计算交流参数的取值结果,再联合已获取的电信号参量,求解连续相关函数,从而检测电力关键设备运行状态。实验过程中,设备两端负载电压、内阻消耗电压之和与干路总电压之间的差值未超过1.5 V,说明该方法能够证明电力关键设备两端负载电压、内阻消耗电压之和等于干路总电压数值的猜想成立,可以根据该验证检测电力关键设备运行状态是否正常。 展开更多
关键词 Mask r-cnn模型 电力设备 运行状态 负荷阻抗 交流参数 负载电压
下载PDF
融合注意力机制和Faster R-CNN的织物疵点检测算法 被引量:6
10
作者 陈梦琦 余灵婕 +2 位作者 支超 祝双武 郜仲元 《纺织高校基础科学学报》 CAS 2021年第4期46-52,共7页
针对织物疵点纹理多变、类型多样和尺度不一的特点,提出了优化Faster R-CNN疵点检测模型。将基于卷积模块的注意力机制(convolutional block attention module,CBAM)引入经典Faster R-CNN模型中,对建立的6317张包含污渍、破洞、跳花、... 针对织物疵点纹理多变、类型多样和尺度不一的特点,提出了优化Faster R-CNN疵点检测模型。将基于卷积模块的注意力机制(convolutional block attention module,CBAM)引入经典Faster R-CNN模型中,对建立的6317张包含污渍、破洞、跳花、断经、断纬、缺经、缺纬和并纬等疵点的织物图片样本库进行CBAM的改进模型与原模型对比实验。结果表明:优化后的网络模型能有效提高织物疵点识别的精度和检测速度,模型的平均精度均值和准确率均值分别从77.01%、61.55%提升到78.81%、64.37%;同时,单张图像的平均检测时间也明显缩短。 展开更多
关键词 织物疵点检测 注意力机制 Faster r-cnn模型 精度 准确率
下载PDF
基于CNKI数据库的Faster R-CNN模型应用可视化分析
11
作者 丁士宁 《智能计算机与应用》 2024年第4期113-117,共5页
为了解Faster R-CNN模型在国内的研究现状和研究热点,基于在CNKI数据库中检索的248篇核心期刊文献,使用Excel和VOSviewer软件对年度发文量、作者、关键词进行分析并进行可视化。结果表明:国内关于Faster R-CNN模型的研究最早出现在2017... 为了解Faster R-CNN模型在国内的研究现状和研究热点,基于在CNKI数据库中检索的248篇核心期刊文献,使用Excel和VOSviewer软件对年度发文量、作者、关键词进行分析并进行可视化。结果表明:国内关于Faster R-CNN模型的研究最早出现在2017年,且在2017-2021年度发文量逐年递增,2021年年度发文量达到73篇的峰值,并在2022年回落到43篇;超过95%的作者仅发表1篇文献,发表文献不少于3篇的作者仅9位,且作者之间的合作松散;Faster R-CNN模型的应用领域主要集中于交通标志检测、车辆检测、杂草识别、遥感图像等方面,模型的改进方法包括Soft NMS、注意力机制、K-means聚类等。 展开更多
关键词 Faster r-cnn模型 EXCEL VOSviewer 核心期刊 可视化
下载PDF
基于Faster R-CNN图像处理的变电站异常设备红外检测方法
12
作者 蒋健 刘年 孙超 《沈阳工业大学学报》 CAS 北大核心 2024年第2期157-164,共8页
针对智能变电站内一次设备红外监测图像分析与处理智能化较低的问题,提出了一种基于Faster R-CNN的变电站异常设备红外检测图谱分析方法,并实现了变电站故障设备的智能识别和原因分析。将远程终端单元所采集到的红外图像进行预处理,并... 针对智能变电站内一次设备红外监测图像分析与处理智能化较低的问题,提出了一种基于Faster R-CNN的变电站异常设备红外检测图谱分析方法,并实现了变电站故障设备的智能识别和原因分析。将远程终端单元所采集到的红外图像进行预处理,并对图中的变电站设备进行识别;采用大津算法结合图像灰度值的特殊性对图像进行分割与图像配准;Faster R-CNN则用于对比判断设备是否处于故障状态并分析原因。实验测试结果表明,所提方法对于多种故障设备的识别准确率均在90%以上,具有较优的鲁棒性。 展开更多
关键词 智能变电站 一次设备 故障检测 红外图谱 图像处理 OSTU算法 图像灰度值 Faster r-cnn模型
下载PDF
基于视觉识别的智能翻译机器人人机交互系统研究 被引量:2
13
作者 王馨悦 周小天 《自动化与仪器仪表》 2023年第5期207-211,共5页
为提高智能翻译机器人人机交互的准确率,提出一种基于视觉识别的智能翻译机器人人机交互方法。方法通过采用Faster R-CNN模型提取视觉图像序列特征,并采用图结构表示提取的视觉图像序列特征,然后进行编码-解码,实现了智能翻译机器人的... 为提高智能翻译机器人人机交互的准确率,提出一种基于视觉识别的智能翻译机器人人机交互方法。方法通过采用Faster R-CNN模型提取视觉图像序列特征,并采用图结构表示提取的视觉图像序列特征,然后进行编码-解码,实现了智能翻译机器人的人机交互。仿真结果表明,所提方法提取的视觉图像特征具有较高的准确率,在ImageNet数据集上的准确率均超过80%,在MS COCO数据集上的准确率均超过70%;图结构表示准确率较高,达到80%以上。相较于基于SOTA模型和基于VLN模型的人机交互方法,所提方法无论是使用束搜索还是预搜索进行评估,其加权路径长度和错误率更小,成功率和路径长度加权成功率更高。指令匹配的成功率达到95.42%,识别准确率较高,提出方法具有一定的有效性和优越性,可用于实际智能翻译机器人人机交互。 展开更多
关键词 视觉识别 智能翻译机器人 人机交互 Faster r-cnn模型
原文传递
可燃性粉尘云的图像检测方法 被引量:4
14
作者 赵欣然 张琪 +1 位作者 王卫东 徐志强 《中国安全科学学报》 CAS CSCD 北大核心 2020年第4期8-13,共6页
近年来粉尘爆炸引起的安全生产事故频繁发生,在线检测粉尘易集聚场所的粉尘云浓度并进行预警,成为控制粉尘爆炸的关键手段,而目前粉尘浓度传感器在大空间粉尘云聚集场所存在安装与识别局限性。为此,提出基于深度学习的可燃性粉尘云图像... 近年来粉尘爆炸引起的安全生产事故频繁发生,在线检测粉尘易集聚场所的粉尘云浓度并进行预警,成为控制粉尘爆炸的关键手段,而目前粉尘浓度传感器在大空间粉尘云聚集场所存在安装与识别局限性。为此,提出基于深度学习的可燃性粉尘云图像检测方法;采用基于卷积神经网络(CNN)的Faster R-CNN模型,对可燃性粉尘云进行端到端的检测与识别;并通过建立的粉尘云标准浓度图像数据库验证模型的有效性。结果表明:Faster R-CNN模型具有较高的识别精度。 展开更多
关键词 可燃性粉尘云 图像检测 卷积神经网络(cnn) 深度学习 Faster r-cnn模型
下载PDF
基于Faster R-CNN的动漫场景多人物自动识别研究
15
作者 高梦 《佳木斯大学学报(自然科学版)》 CAS 2024年第3期53-57,共5页
当前动漫场景多人物识别方法在提取目标特征时,对于汇聚特征信息的滑动窗口定位不准确,所提取到的特征信息不准确,导致识别精度较差,因此为了解决这一问题,提出了一种基于Faster R-CNN的动漫场景多人物自动识别方法。标注大量动漫场景... 当前动漫场景多人物识别方法在提取目标特征时,对于汇聚特征信息的滑动窗口定位不准确,所提取到的特征信息不准确,导致识别精度较差,因此为了解决这一问题,提出了一种基于Faster R-CNN的动漫场景多人物自动识别方法。标注大量动漫场景人物形象图片,构建训练集和测试集,将其输入Faster R-CNN神经网络模型,提取图像特征并构建特征图。采用滑动窗口遍历特征图,选择特征向量评分最高的窗口,保证窗口内局部特征可以充分表示动漫人物主要特征,根据特征提取结果自动识别多个动漫人物身份,完成动漫场景多人物自动识别。实验结果表明,设计方法与两种传统方法相比,人物识别召回率分别提升了11.10%和18.99%,提高了目标识别精度,人物识别过拟合比率稳定在1.0060,说明该方法能够高精度不同类别的动漫人物,且识别过程较为稳定,识别效率较高。 展开更多
关键词 Faster r-cnn模型 训练数据 测试数据 动漫场景 多人物识别 特征提取
下载PDF
一种结合非顶层特征图和自适应阈值的飞机目标检测算法 被引量:5
16
作者 谭振宇 江刚武 刘建辉 《测绘科学技术学报》 北大核心 2019年第4期382-387,共6页
针对Faster R-CNN模型在遥感影像中对飞机目标进行检测与识别时,易出现漏检、错检等问题,提出了一种在基于小样本飞机遥感影像数据集的改进型Faster R-CNN目标检测方法。首先对特征提取网络进行优化,然后将非顶层特征图融合顶层特征图... 针对Faster R-CNN模型在遥感影像中对飞机目标进行检测与识别时,易出现漏检、错检等问题,提出了一种在基于小样本飞机遥感影像数据集的改进型Faster R-CNN目标检测方法。首先对特征提取网络进行优化,然后将非顶层特征图融合顶层特征图得到边缘信息更丰富的融合特征图,利用该特征图输入RPN网络,完成目标检测模型的训练;并结合自适应阈值进行检测。以普通客机与战斗机目标为试验对象,开展飞机目标检测与识别对比分析。试验结果表明,所提出的算法在小样本情况下检测效果有明显提升。 展开更多
关键词 飞机 目标检测 FASTEr r-cnn模型 rPN网络 特征图
下载PDF
视觉引导下机器人拆垛场景识别定位抓取方法 被引量:1
17
作者 朱新龙 崔国华 +1 位作者 陈赛旋 杨琳 《机床与液压》 北大核心 2023年第3期71-77,共7页
针对2D图像识别缺乏3D姿态信息,而传统的3D视觉需要处理大量点云,运算时间较长等问题,提出一种基于改进Mask R-CNN与局部点云迭代优化相结合的机器人拆垛、分拣及码垛策略。对Mask R-CNN网络进行改进,在其ROIAlign结构之后加入空间变换... 针对2D图像识别缺乏3D姿态信息,而传统的3D视觉需要处理大量点云,运算时间较长等问题,提出一种基于改进Mask R-CNN与局部点云迭代优化相结合的机器人拆垛、分拣及码垛策略。对Mask R-CNN网络进行改进,在其ROIAlign结构之后加入空间变换网络模块,提升识别准确率;利用改进的Mask R-CNN网络对目标进行实例分割,结合场景点云分割得到物体感兴趣区(ROI)场景局部点云;采用加入K维树邻域搜索的迭代最近点算法将物体ROI场景局部点云与模板点云进行配准,最终得到位姿估计的结果。UR5协作机器人根据此结果解决拆垛、分拣及码垛问题,实验结果表明:利用改进的Mask R-CNN网络提升了目标识别的准确率,使用ROI局部点云法减少了场景点云与模板点云配准的迭代次数,提高了工业机器人的拆垛、分拣及码垛效率。 展开更多
关键词 检测识别 Mask r-cnn模型 ICP算法 位姿估计 拆垛策略
下载PDF
基于迁移学习Faster R-CNN模型田间红提葡萄果穗的识别 被引量:5
18
作者 查志华 周文静 吴杰 《石河子大学学报(自然科学版)》 CAS 北大核心 2021年第1期26-31,共6页
葡萄种植过程中大部分工作由人工完成,其劳动强度较大且生产效率低,为实现田间作业的自动化需要准确识别田间葡萄果穗,本文采用Faster R-CNN模型实现田间红提葡萄果穗的识别。首先根据田间环境采用不同设备采集葡萄果穗图像,包括不同光... 葡萄种植过程中大部分工作由人工完成,其劳动强度较大且生产效率低,为实现田间作业的自动化需要准确识别田间葡萄果穗,本文采用Faster R-CNN模型实现田间红提葡萄果穗的识别。首先根据田间环境采用不同设备采集葡萄果穗图像,包括不同光照强度下不同成熟度的葡萄果穗图像,通过数据扩增的方法将样本数量扩大4倍并制作数据集,再分别采用Resnet50、Googlenet、VGG16、VGG19、Alexnet作为Faster R-CNN模型的区域候选网络(RPN),并对比分析5种迁移学习模型的识别结果,选择较优的模型进行参数优化。5种迁移学习模型识别结果表明:VGG16迁移学习模型识别效果最佳;当VGG16迁移学习模型训练学习率调整为0.000 1,循环次数为20次时,模型识别平均精度达99.07%,平均检测时间26 ms;本文方法能够实现田间环境下红提葡萄果穗的识别,可为今后自动化葡萄园管理提供研究基础。 展开更多
关键词 Faster r-cnn模型 迁移学习 目标识别 果穗
下载PDF
红外弱光环境下多尺度密集注意力铁路异物检测 被引量:4
19
作者 陈永 卢晨涛 王镇 《铁道学报》 EI CAS CSCD 北大核心 2022年第7期63-71,共9页
针对红外弱光环境下铁路异物侵限检测时存在目标特征提取不充分、检测精度低的问题,在Mask R-CNN检测模型的基础上,提出一种红外弱光环境下多尺度密集注意力铁路异物检测方法。首先,提出密集连接的多尺度FPN金字塔网络,加强对特征图的利... 针对红外弱光环境下铁路异物侵限检测时存在目标特征提取不充分、检测精度低的问题,在Mask R-CNN检测模型的基础上,提出一种红外弱光环境下多尺度密集注意力铁路异物检测方法。首先,提出密集连接的多尺度FPN金字塔网络,加强对特征图的利用,从而提高红外弱光环境下的检测精度。同时,引入CBAM注意力机制,改进ResNet-FPN网络结构,提高对目标区域的关注度,突出红外弱光环境下的目标特征。其次,改进k-means算法重新预设锚点框大小,以提升锚点框对目标区域定位的准确性。最后,通过铁路红外数据集及现场实验进行测试验证。实验结果表明,本方法具有较高的检测精度,精确率可达89.24%,较Mask R-CNN召回率增加了6%,像素准确率增加了8%;在红外弱光环境下可以更加准确地检测出铁路异物,并能实现铁路限界区域的划分,在主客观评价方面均优于对比方法。 展开更多
关键词 红外弱光 红外目标 铁路异物检测 密集注意力 改进Mask r-cnn模型
下载PDF
应急遥感制图中敏感目标自动检测与隐藏方法 被引量:4
20
作者 鲁鹏杰 许大璐 +3 位作者 任福 徐胜华 邱天奇 彭瑞 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2020年第8期1263-1272,共10页
应急遥感制图在灾害响应中作用显著,能为灾害评估、救灾决策提供有力支撑。传统应急遥感制图流程中,人工检索敏感目标并使用图像编辑工具进行脱密处理的方式效率不高,与防灾救灾的高即时性要求相矛盾,无法实现快速发布与使用。将深度学... 应急遥感制图在灾害响应中作用显著,能为灾害评估、救灾决策提供有力支撑。传统应急遥感制图流程中,人工检索敏感目标并使用图像编辑工具进行脱密处理的方式效率不高,与防灾救灾的高即时性要求相矛盾,无法实现快速发布与使用。将深度学习中的目标检测模型和生成式对抗网络模型相结合,构建遥感影像敏感目标检测与隐藏两阶段处理模型,并以遥感制图中飞机目标处理为例验证模型性能。针对飞机目标特点,采用损失函数重构、区域推荐网络候选框优化、Mask优化算法引入、注意力机制重构等改进方案。实验结果表明,该方法全流程处理时间较人工处理缩短50%以上,能快速、智能地进行遥感影像敏感目标检测与隐藏处理,缩短应急制图周期。 展开更多
关键词 应急遥感制图 敏感目标检测 敏感目标隐藏 Mask r-cnn模型 Deepfill模型
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部