平面3-R R R并联机构的柔性杆在运动过程中产生的柔性变形会影响机构的输出精度。基于绝对节点坐标法,建立含有柔性杆、刚性动平台的平面3-R R R并联机构刚柔耦合模型,对并联机构的动态特性进行研究,获得并联机构各时刻的位姿和动平台...平面3-R R R并联机构的柔性杆在运动过程中产生的柔性变形会影响机构的输出精度。基于绝对节点坐标法,建立含有柔性杆、刚性动平台的平面3-R R R并联机构刚柔耦合模型,对并联机构的动态特性进行研究,获得并联机构各时刻的位姿和动平台质心运动轨迹。结果表明,柔性杆的弹性变形使动平台不能按照预期的轨迹运行。建立柔性杆局部坐标系,得到了柔性杆中点处挠度值,发现主动杆的弯曲变形远大于从动杆,柔性杆对机构输出精度的影响主要由主动杆产生。仿真结果可以为机构的设计和优化提供理论依据。展开更多
One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three ...One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.展开更多
文摘平面3-R R R并联机构的柔性杆在运动过程中产生的柔性变形会影响机构的输出精度。基于绝对节点坐标法,建立含有柔性杆、刚性动平台的平面3-R R R并联机构刚柔耦合模型,对并联机构的动态特性进行研究,获得并联机构各时刻的位姿和动平台质心运动轨迹。结果表明,柔性杆的弹性变形使动平台不能按照预期的轨迹运行。建立柔性杆局部坐标系,得到了柔性杆中点处挠度值,发现主动杆的弯曲变形远大于从动杆,柔性杆对机构输出精度的影响主要由主动杆产生。仿真结果可以为机构的设计和优化提供理论依据。
基金The National High Technology Research and Development Program of China(863Program)(No.2006AA040202)
文摘One kind of movable-pair analysis method is adopted to analyze the configuration of a 3-7R (revolute-pair) parallel decoupling mechanism, and the mechanism's characteristics are summarized. The mechanism has three orthogonal distributional branch-chains, and all movable pairs are rotational joints. The movable platform of the mechanism has x, y, z translational decoupling directions. Furthermore, in order to verify the mechanism's decoupling characteristics, the mechanism's kinematics analysis is solved, and the mechanism's direct/inverse kinematics model, input/output velocities and accelerations are deduced, which confirm its decoupling movement characteristics. Finally, one kind of mechanism link decomposed-integrated approach is adopted, and the mechanism's dynamics model is completed with the Lagrange method, which also proves its decoupling force characteristics. All of these works provide significant theory for the further study of the mechanism's control strategy, design, path planning etc.