期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
simplifyEnrichment:A Bioconductor Package for Clustering and Visualizing Functional Enrichment Results 被引量:1
1
作者 Zuguang Gu Daniel Hübschmann 《Genomics, Proteomics & Bioinformatics》 SCIE CAS CSCD 2023年第1期190-202,共13页
Functional enrichment analysis or gene set enrichment analysis is a basic bioinformatics method that evaluates the biological importance of a list of genes of interest.However,it may produce a long list of significant... Functional enrichment analysis or gene set enrichment analysis is a basic bioinformatics method that evaluates the biological importance of a list of genes of interest.However,it may produce a long list of significant terms with highly redundant information that is difficult to summarize.Current tools to simplify enrichment results by clustering them into groups either still produce redundancy between clusters or do not retain consistent term similarities within clusters.We propose a new method named binary cut for clustering similarity matrices of functional terms.Through comprehensive benchmarks on both simulated and real-world datasets,we demonstrated that binary cut could efficiently cluster functional terms into groups where terms showed consistent similarities within groups and were mutually exclusive between groups.We compared binary cut clustering on the similarity matrices obtained from different similarity measures and found that semantic similarity worked well with binary cut,while similarity matrices based on gene overlap showed less consistent patterns.We implemented the binary cut algorithm in the R package simplifyEnrichment,which additionally provides functionalities for visualizing,summarizing,and comparing the clustering.The simplifyEnrichment package and the documentation are available at https://bioconductor.org/packages/simplifyEnrichment/. 展开更多
关键词 Functional enrichment Simplify enrichment CLUSTErING r/bioconductor Software VISUALIZATION
原文传递
利用公共数据库挖掘肿瘤关键基因
2
作者 卢娟 郑剑锋 《实验与检验医学》 CAS 2015年第6期711-713,744,共4页
目的利用公共数据库挖掘肝癌发生过程的关键基因,为后续的功能验证奠定基础。方法以肝癌表达谱芯片数据GSE33006为例,采用免费开源的R/Bio Conductor分析工具,介绍基本分析步骤,对肝癌表达谱数据进行分析。结果芯片数据GSE33006中,差异... 目的利用公共数据库挖掘肝癌发生过程的关键基因,为后续的功能验证奠定基础。方法以肝癌表达谱芯片数据GSE33006为例,采用免费开源的R/Bio Conductor分析工具,介绍基本分析步骤,对肝癌表达谱数据进行分析。结果芯片数据GSE33006中,差异表达基因有2134个,同一基因在癌组织和癌旁组织具有不同的表达模式,说明该基因与肝癌相关;同一基因在不同的癌组织表达存在差异,说明肝癌存在异质性。结论在公共数据库中挖掘肿瘤关键基因能为研究者提供生物信息学信息,能减少研究范围。 展开更多
关键词 肿瘤数据库 基因表达 r/bioconductor 数据挖掘
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部