In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely impor...In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely important. In this article, a complex non-linear process is considered by taking into account the average points per game of each player, playing time, shooting percentage, and others. This physics-informed statistics is to construct a multiple linear regression model with physics-informed neural networks. Based on the official data provided by the American Basketball League, and combined with specific methods of R program analysis, the regression model affecting the player’s average points per game is verified, and the key factors affecting the player’s average points per game are finally elucidated. The paper provides a novel window for coaches to make meaningful in-game adjustments to team members.展开更多
For geological disposal of high-level radioactive waste (HLW), the Chinese policy is that the spent nuclear fuel (SNF) should be reprocessed first, followed by vitrification and final disposal. The preliminary rep...For geological disposal of high-level radioactive waste (HLW), the Chinese policy is that the spent nuclear fuel (SNF) should be reprocessed first, followed by vitrification and final disposal. The preliminary repository concept is a shaft-tunnel model, located in saturated zones in granite, while the final waste form for disposal is vitrified high-level radioactive waste. In 2006, the government published a long-term research and development (R&D) plan for geological disposal of high-level radioactive waste. The program consists of three steps: (1) laboratory studies and site selection for a HLW repository (2006-2020); (2) underground in-situ tests (2021-2040); and (3) repository construction (2041-2050) followed by operation. With the support of China Atomic Energy Authority, comprehensive studies are underway and some progresses are made. The site characterization, including deep borehole drilling, has been performed at the most potential Beishan site in Gansu Province, Northwestern China. The data from geological and hydrogeological investigations, in-situ stress and permeability measurements of rock mass are presented in this paper. Engineered barrier studies are concentrated on the Gaomiaozi bentonite. A mock-up facility, which is used to study the thermo-hydro-mechano-chemical (THMC) properties of the bentonite, is under construction. Several projects on mechanical properties of Beishan granite are also underway. The key scientific challenges faced with HLW disposal are also discussed.展开更多
文摘In basketball, each player’s skill level is the key to a team’s success or failure, the skill level is affected by many personal and environmental factors. A physics-informed AI statistics has become extremely important. In this article, a complex non-linear process is considered by taking into account the average points per game of each player, playing time, shooting percentage, and others. This physics-informed statistics is to construct a multiple linear regression model with physics-informed neural networks. Based on the official data provided by the American Basketball League, and combined with specific methods of R program analysis, the regression model affecting the player’s average points per game is verified, and the key factors affecting the player’s average points per game are finally elucidated. The paper provides a novel window for coaches to make meaningful in-game adjustments to team members.
基金Supported by the China Atomic Energy Authority’s Special Program for Radioactive Waste Management and the International Atomic Energy Agency’s Technical Cooperation Project (IAE-TC Project CPR/9/026, CPR/4/024, CPR/3/008)
文摘For geological disposal of high-level radioactive waste (HLW), the Chinese policy is that the spent nuclear fuel (SNF) should be reprocessed first, followed by vitrification and final disposal. The preliminary repository concept is a shaft-tunnel model, located in saturated zones in granite, while the final waste form for disposal is vitrified high-level radioactive waste. In 2006, the government published a long-term research and development (R&D) plan for geological disposal of high-level radioactive waste. The program consists of three steps: (1) laboratory studies and site selection for a HLW repository (2006-2020); (2) underground in-situ tests (2021-2040); and (3) repository construction (2041-2050) followed by operation. With the support of China Atomic Energy Authority, comprehensive studies are underway and some progresses are made. The site characterization, including deep borehole drilling, has been performed at the most potential Beishan site in Gansu Province, Northwestern China. The data from geological and hydrogeological investigations, in-situ stress and permeability measurements of rock mass are presented in this paper. Engineered barrier studies are concentrated on the Gaomiaozi bentonite. A mock-up facility, which is used to study the thermo-hydro-mechano-chemical (THMC) properties of the bentonite, is under construction. Several projects on mechanical properties of Beishan granite are also underway. The key scientific challenges faced with HLW disposal are also discussed.