In this paper, we studied the seasonal behavior of the total electron content (TEC) during a part of solar cycle 24 ascending, maximum and decreasing phases at Koudougou station (Latitude: 12°15'09"N Lon...In this paper, we studied the seasonal behavior of the total electron content (TEC) during a part of solar cycle 24 ascending, maximum and decreasing phases at Koudougou station (Latitude: 12°15'09"N Longitude: 2°21'45"W). Response of TEC to solar recurrent events is presented. The highest values of the TEC in 2014, 2015 and 2016 were recorded on March and October, while in 2013 they were recorded on April and November, corresponding to equinox months. This observation shows that TEC values at the equinoxes are higher than those of solstices. Moreover, the monthly TEC varies in phase with the sunspots number showing a linear dependence of the TEC on solar activity. The ionospheric electron contents are generally very low both before noon and during the night, but quite high at noon and after noon. This pattern of TEC variation is due to the fluctuation of incident solar radiation on the Earth’s equatorial ionosphere. During quiet periods, the number of free electrons generated is lower than that generated during recurrent periods, which shows a positive contribution of recurrent activity to the level of the TEC. Investigations have also highlighted a winter anomaly and equinoctial asymmetry in TEC behavior at Koudougou station.展开更多
The basic rhythms of nature that left their imprint on the existence of all living organism on the Earth, arose under the influence of the Earth’s rotation relative to the Sun, the Moon and other planets and stars of...The basic rhythms of nature that left their imprint on the existence of all living organism on the Earth, arose under the influence of the Earth’s rotation relative to the Sun, the Moon and other planets and stars of the Universe. This periodicity gave rise to the rhythm that has become essential for their life. Life is a continual chemical process of building up and breaking down of organic substances, which results from the substance exchange between an organism and the environment. This makes it impossible for a living organism to exist without the external environment. Since 1978-1979 we have been carrying out a task-oriented research with the aim to approximate the moment when we are able to answer all these questions. Daily fluctuations of cardiac and motor activity of the fetus have been studied (uninterrupted daily recording of fetal ECG);polysomnography of nocturnal sleep was recorded;daily fluctuations of endocrine system activity in the pregnant were studied. A correlation was made between the functional state of maternal sleep-wakefulness biological rhythm, biological clock of the human fetus and the “light-darkness” cycle of a 24-hour solar day. In the process of the study we have developed an original method of day-to-day analysis of maternal and fetal ECGs. It has been established that a healthy fetus has distinct, diurnal variations of physiological functions. The fetal biorhythms coordinate with the status of the maternal organism being, however, in an opposite phase. The curve of the dynamics of fetal physiological system functioning shows a biphasic nature (one-phase in adults). “Active” and “quiet” (sleep-like) periods have been singled out in the human fetus. No reaction is observed in “quiet” periods. However, the “zero”-type fetal reaction recorded by us within the period from 2 p.m. to 9 p.m. does not indicate unsatisfactory condition of the fetus but rather is suggestive of a definite reduction of functional levels of the fetal physiological systems, which is necessa展开更多
In this work, the comparative study of total electron content (TEC) between recurrent and quiet geomagnetic periods of solar cycle 24 at Koudougou station with geographical coordinates 12°15'N;- 2°20'...In this work, the comparative study of total electron content (TEC) between recurrent and quiet geomagnetic periods of solar cycle 24 at Koudougou station with geographical coordinates 12°15'N;- 2°20'E was addressed. This study aims to analyze how geomagnetic variations influence the behavior of TEC in this specific region. The geomagnetic indices Kp and Dst were used to select quiet and recurrent days. Statistical analysis was used to interpret the graphs. The results show that the mean diurnal TEC has a minimum before dawn (around 0500 UT) and reaches a maximum value around 1400 UT, progressively decreasing after sunset. In comparison, the average diurnal TEC on recurrent days is slightly higher than on quiet days, with an average difference of 7 TECU. This difference increases with the level of geomagnetic disturbance, reaching 21 TECU during a moderate storm. The study also reveals significant monthly variations, with March and October showing the highest TEC values for quiet and recurrent days, respectively. Equinox months show the highest mean values, while solstice months show the lowest. Signatures of semi-annual, winter and equatorial ionization anomalies were observed. When analyzing annual variations, it was found that the TEC variation depends significantly on F10.7 solar flux, explaining up to 98% during recurrent geomagnetic activity and 92% during quiet geomagnetic activity.展开更多
文摘In this paper, we studied the seasonal behavior of the total electron content (TEC) during a part of solar cycle 24 ascending, maximum and decreasing phases at Koudougou station (Latitude: 12°15'09"N Longitude: 2°21'45"W). Response of TEC to solar recurrent events is presented. The highest values of the TEC in 2014, 2015 and 2016 were recorded on March and October, while in 2013 they were recorded on April and November, corresponding to equinox months. This observation shows that TEC values at the equinoxes are higher than those of solstices. Moreover, the monthly TEC varies in phase with the sunspots number showing a linear dependence of the TEC on solar activity. The ionospheric electron contents are generally very low both before noon and during the night, but quite high at noon and after noon. This pattern of TEC variation is due to the fluctuation of incident solar radiation on the Earth’s equatorial ionosphere. During quiet periods, the number of free electrons generated is lower than that generated during recurrent periods, which shows a positive contribution of recurrent activity to the level of the TEC. Investigations have also highlighted a winter anomaly and equinoctial asymmetry in TEC behavior at Koudougou station.
文摘The basic rhythms of nature that left their imprint on the existence of all living organism on the Earth, arose under the influence of the Earth’s rotation relative to the Sun, the Moon and other planets and stars of the Universe. This periodicity gave rise to the rhythm that has become essential for their life. Life is a continual chemical process of building up and breaking down of organic substances, which results from the substance exchange between an organism and the environment. This makes it impossible for a living organism to exist without the external environment. Since 1978-1979 we have been carrying out a task-oriented research with the aim to approximate the moment when we are able to answer all these questions. Daily fluctuations of cardiac and motor activity of the fetus have been studied (uninterrupted daily recording of fetal ECG);polysomnography of nocturnal sleep was recorded;daily fluctuations of endocrine system activity in the pregnant were studied. A correlation was made between the functional state of maternal sleep-wakefulness biological rhythm, biological clock of the human fetus and the “light-darkness” cycle of a 24-hour solar day. In the process of the study we have developed an original method of day-to-day analysis of maternal and fetal ECGs. It has been established that a healthy fetus has distinct, diurnal variations of physiological functions. The fetal biorhythms coordinate with the status of the maternal organism being, however, in an opposite phase. The curve of the dynamics of fetal physiological system functioning shows a biphasic nature (one-phase in adults). “Active” and “quiet” (sleep-like) periods have been singled out in the human fetus. No reaction is observed in “quiet” periods. However, the “zero”-type fetal reaction recorded by us within the period from 2 p.m. to 9 p.m. does not indicate unsatisfactory condition of the fetus but rather is suggestive of a definite reduction of functional levels of the fetal physiological systems, which is necessa
文摘In this work, the comparative study of total electron content (TEC) between recurrent and quiet geomagnetic periods of solar cycle 24 at Koudougou station with geographical coordinates 12°15'N;- 2°20'E was addressed. This study aims to analyze how geomagnetic variations influence the behavior of TEC in this specific region. The geomagnetic indices Kp and Dst were used to select quiet and recurrent days. Statistical analysis was used to interpret the graphs. The results show that the mean diurnal TEC has a minimum before dawn (around 0500 UT) and reaches a maximum value around 1400 UT, progressively decreasing after sunset. In comparison, the average diurnal TEC on recurrent days is slightly higher than on quiet days, with an average difference of 7 TECU. This difference increases with the level of geomagnetic disturbance, reaching 21 TECU during a moderate storm. The study also reveals significant monthly variations, with March and October showing the highest TEC values for quiet and recurrent days, respectively. Equinox months show the highest mean values, while solstice months show the lowest. Signatures of semi-annual, winter and equatorial ionization anomalies were observed. When analyzing annual variations, it was found that the TEC variation depends significantly on F10.7 solar flux, explaining up to 98% during recurrent geomagnetic activity and 92% during quiet geomagnetic activity.