The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quench...The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.展开更多
We study the porous medium equation ut=(um). 0<x<∞, t>0 with a singular boundary condition (um) (0,t)=u-β(0,t). We prove finite time quenching for the solution at the boundary χ=0. We also establish the qu...We study the porous medium equation ut=(um). 0<x<∞, t>0 with a singular boundary condition (um) (0,t)=u-β(0,t). We prove finite time quenching for the solution at the boundary χ=0. We also establish the quenching rate and asymptotic behavior on the quenching point.展开更多
Angular correlations between a heavy quark(HQ)and its tagged jet are potentially new tools to gain insight into the in-medium partonic interactions in relativistic heavy-ion collisions.In this work,we present the firs...Angular correlations between a heavy quark(HQ)and its tagged jet are potentially new tools to gain insight into the in-medium partonic interactions in relativistic heavy-ion collisions.In this work,we present the first theoretical study on the radial profiles of B mesons in jets in Pb+Pb collisions at the Large Hadron Collider(LHC).The initial production of a bottom quark tagged jet in p+p is computed by SHERPA,which matches the next-to-leading order matrix elements with contributions of parton showers,whereas the massive quark traversing the quark-gluon plasma is described by a Monte Carlo model,SHELL,which can simultaneously simulate light and heavy flavor in-medium energy loss within the framework of Langevin evolution.In p+p collisions,we find that at lower PQ/T the radial profiles of heavy flavors in jets are sensitive to the heavy quark mass.In 0-10%Pb+Pb collisions at√SNN=5.02 TeV,we observe an inverse modification pattern of the B meson radial profiles in jets at4PQ/T<20 GeV compared to those of D mesons:the jet quenching effects narrow the jet radial profiles of B mesons in jets while broadening those of D mesons in jets.We find that in A+A collisions,the contribution dissipated from the higher PQ/T>20 GeV region naturally has a narrower initial distribution and consequently leads to a narrower modification pattern of the radial profile;however the diffusion nature of the heavy flavor in-medium interactions will give rise to a broader modification pattern of the radial profile.These two effects consequently compete and offset with each other,and the b quarks in jets benefit more from the former and suffer less diffusion effect compared to that of c quarks in jets.These findings can be tested in the future experimental measurements at the LHC to gain better understanding of the mass effect of jet quenching.展开更多
To minimize quenching distortion and dispersion, carburizing and quenching process conditions must be optimized; this includes the parts racking design used for quenching. We investigated some factors affecting carbur...To minimize quenching distortion and dispersion, carburizing and quenching process conditions must be optimized; this includes the parts racking design used for quenching. We investigated some factors affecting carburized quenching distortion with an experiment using a hypoid gear having a shaft and with numerical simulation methods. The experimental results and those obtained from simulation were generally in agreement. Focusing on the surface temperature distribution in the gear, we studied quenching distortion characteristics in terms of changes in tooth profile and helix deviation. In our experiments, distortions occur during quenching in 373 K oil after austenitized temperature treatments conducted with various attitudes. We calculated the distortions by simulating the carburized oil-quenching process for the hypoid gear. Our results show large differences between the cooling rates of the tooth toe, middle section, and heel edges, and these greatly influence the change in tooth profile and helix deviation. We found that reducing the differences in temperatures on the gear surfaces during quenching is most important for minimizing the quench distortion of the hypoid gear.展开更多
基金Project(zzyjkt2013-10B)supported by the Foundation of State Key Laboratory of High-performance&Complicated Manufacturing,ChinaProject(51275533)supported by the National Natural Science Foundation of China
文摘The cooling curves of 6061 aluminum alloy were acquired through water quenching experiment. The heat transfer coefficient was accurately calculated based on the cooling curves and the law of cooling. The online quenching process of complex cross-section profile was dynamically simulated by the ABAQUS software. The results suggest that the heat transfer coefficient changes during online quenching process. Different parts of the profile have different cooling velocity, and it was verified by water quenching experiment. The maximum residual stress of the profile was predicted using FEM simulation based on ABAQUS software The relations between the temperature and stress were presented by analyzing the data of key points.
文摘We study the porous medium equation ut=(um). 0<x<∞, t>0 with a singular boundary condition (um) (0,t)=u-β(0,t). We prove finite time quenching for the solution at the boundary χ=0. We also establish the quenching rate and asymptotic behavior on the quenching point.
基金Supported by the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030008)the Science and Technology Program of Guangzhou(2019050001)the NSFC of China with Project(11935007,11805167)。
文摘Angular correlations between a heavy quark(HQ)and its tagged jet are potentially new tools to gain insight into the in-medium partonic interactions in relativistic heavy-ion collisions.In this work,we present the first theoretical study on the radial profiles of B mesons in jets in Pb+Pb collisions at the Large Hadron Collider(LHC).The initial production of a bottom quark tagged jet in p+p is computed by SHERPA,which matches the next-to-leading order matrix elements with contributions of parton showers,whereas the massive quark traversing the quark-gluon plasma is described by a Monte Carlo model,SHELL,which can simultaneously simulate light and heavy flavor in-medium energy loss within the framework of Langevin evolution.In p+p collisions,we find that at lower PQ/T the radial profiles of heavy flavors in jets are sensitive to the heavy quark mass.In 0-10%Pb+Pb collisions at√SNN=5.02 TeV,we observe an inverse modification pattern of the B meson radial profiles in jets at4PQ/T<20 GeV compared to those of D mesons:the jet quenching effects narrow the jet radial profiles of B mesons in jets while broadening those of D mesons in jets.We find that in A+A collisions,the contribution dissipated from the higher PQ/T>20 GeV region naturally has a narrower initial distribution and consequently leads to a narrower modification pattern of the radial profile;however the diffusion nature of the heavy flavor in-medium interactions will give rise to a broader modification pattern of the radial profile.These two effects consequently compete and offset with each other,and the b quarks in jets benefit more from the former and suffer less diffusion effect compared to that of c quarks in jets.These findings can be tested in the future experimental measurements at the LHC to gain better understanding of the mass effect of jet quenching.
文摘To minimize quenching distortion and dispersion, carburizing and quenching process conditions must be optimized; this includes the parts racking design used for quenching. We investigated some factors affecting carburized quenching distortion with an experiment using a hypoid gear having a shaft and with numerical simulation methods. The experimental results and those obtained from simulation were generally in agreement. Focusing on the surface temperature distribution in the gear, we studied quenching distortion characteristics in terms of changes in tooth profile and helix deviation. In our experiments, distortions occur during quenching in 373 K oil after austenitized temperature treatments conducted with various attitudes. We calculated the distortions by simulating the carburized oil-quenching process for the hypoid gear. Our results show large differences between the cooling rates of the tooth toe, middle section, and heel edges, and these greatly influence the change in tooth profile and helix deviation. We found that reducing the differences in temperatures on the gear surfaces during quenching is most important for minimizing the quench distortion of the hypoid gear.