期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
About Classical to Quantum Weyl Correspondence
1
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2017年第10期533-582,共50页
After developing the mathematical means for the correspondence of classical phase-space function to quantum-mechanical operators with symmetrical ordering of the basic canonical operators in the sense of Weyl the appr... After developing the mathematical means for the correspondence of classical phase-space function to quantum-mechanical operators with symmetrical ordering of the basic canonical operators in the sense of Weyl the approach is applied to an infinite series of classical monomial functions of the canonical variables. These include as well as pure powers of the amplitude as also basic periodic functions of the phase &phi;with their quantum-mechanical correspondence. In the representation by number states, all the considered operators involve the Jacobi polynomials as the essential formative element. Whereas the quantity in normal ordering due to its indeterminacy leads to the introduction of the notions of sub- and super-Poissonian statistics the analogous quantity in (Weyl) symmetrical orderingis positive definite and satisfies an inequality. The notions of sub- and super-Poissonian statistics are problematic when they are used for the definition of nonclassicality of states since the mentioned measure in normal ordering does not determine the Poisson statistics in their middle in unique way but determines only a large set of statistics which may be very far in the sense of the Hilbert-Schmidt distance from a Poisson statistics that is discussed. 展开更多
关键词 WIGNER quasiprobability Symmetrical (Weyl) Ordering NONCLASSICALITY of Steates Distance of States Sub- and Super-Poissonian Statistics Phase Operator LAGUERRE 2D POLYNOMIALS JACOBI POLYNOMIALS
下载PDF
Squeezed Coherent States in Non-Unitary Approach and Relation to Sub- and Super-Poissonian Statistics
2
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2017年第12期706-757,共52页
After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in gene... After developing the concept of displaced squeezed vacuum states in the non-unitary approach and establishing the connection to the unitary approach we calculate their quasiprobabilities and expectation values in general form. Then we consider the displacement of the squeezed vacuum states and calculate their photon statistics and their quasiprobabilities. The expectation values of the displaced states are related to the expectation values of the undisplaced states and are calculated for some simplest cases which are sufficient to discuss their categorization as sub-Poissonian and super-Poissonian statistics. A large set of these states do not belong to sub- or to super-Poissonian states but are also not Poissonian states. We illustrate in examples their photon distributions. This shows that the notions of sub- and of super-Poissonian statistics and their use for the definition of nonclassicality of states are problematic. In Appendix A we present the most important relations for SU (1,1) treatment of squeezing and the disentanglement of their operators. Some initial members of sequences of expectation values for squeezed vacuum states are collected in Appendix E. 展开更多
关键词 SU (1 1) Group of SQUEEZING and Rotation WIGNER quasiprobability Unitary Approach to SQUEEZING NONCLASSICAL STATES Uncertainty Matrix Distance of STATES Jacobi Ultraspherical LEGENDRE and Hermite Polynomials Poisson STATISTICS
下载PDF
Wigner Quasiprobability with an Application to Coherent Phase States
3
作者 Alfred Wünsche 《Advances in Pure Mathematics》 2018年第6期564-614,共51页
Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical va... Starting from Wigner’s definition of the function named now after him we systematically develop different representation of this quasiprobability with emphasis on symmetric representations concerning the canonical variables (q,p) of phase space and using the known relation to the parity operator. One of the representations is by means of the Laguerre 2D polynomials which is particularly effective in quantum optics. For the coherent states we show that their Fourier transforms are again coherent states. We calculate the Wigner quasiprobability to the eigenstates of a particle in a square well with infinitely high impenetrable walls which is not smooth in the spatial coordinate and vanishes outside the wall boundaries. It is not well suited for the calculation of expectation values. A great place takes on the calculation of the Wigner quasiprobability for coherent phase states in quantum optics which is essentially new. We show that an unorthodox entire function plays there a role in most formulae which makes all calculations difficult. The Wigner quasiprobability for coherent phase states is calculated and graphically represented but due to the involved unorthodox function it may be considered only as illustration and is not suited for the calculation of expectation values. By another approach via the number representation of the states and using the recently developed summation formula by means of Generalized Eulerian numbers it becomes possible to calculate in approximations with good convergence the basic expectation values, in particular, the basic uncertainties which are additionally represented in graphics. Both considered examples, the square well and the coherent phase states, belong to systems with SU (1,1) symmetry with the same index K=1/2 of unitary irreducible representations. 展开更多
关键词 Parity Operator Quantum Square Well COHERENT STATES SU (1 1) Group and REALIZATIONS Glauber-Sudarshan and Husimi-Kano quasiprobability London PHASE STATES PHASE Distribution Unorthodox Entire Function Laguerre 2D Polynomials Generalized Eulerian Numbers
下载PDF
Quasiprobability Distribution of Squeezed Thermal Spin States in Ferromagnet
4
作者 XU Qin-Feng CHENG Ze 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第3期777-782,共6页
We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and... We study squeezed properties of magnon squeezed thermal spin states by using the distribution of Q function in the ferromagnet. It is found that the distribution of Q function strongly depends on the temperature T and coupling parameter γ. Below the transition temperature Tc, the distribution Q function in the squeezed thermal spin state presents a richer structure than in the normal state. Non-classical effects have been observed. In the transition from the normal to the squeezed thermal spin state, the phase symmetry of the magnon system is spontaneously broken. 展开更多
关键词 squeezed thermal spin state ferromagnon quasiprobability distribution function
下载PDF
拟概率空间上的强大数定律(英文) 被引量:2
5
作者 张春琴 杨芳 《数学杂志》 CSCD 北大核心 2012年第6期999-1004,共6页
本文研究了拟概率空间上的强大数定律问题.利用类比的方法,在比概率测度空间更广范的拟概率空间上,提出了强大数定律的概念,获得了拟概率空间上强大数定律的相关结论,推广了强大数定律的研究范围和应用领域.
关键词 强大数定律 拟概率测度 依拟概率1收敛 拟随机变量
下载PDF
高阶TEM_(01)模压缩态Wigner准概率分布函数的量子重构 被引量:2
6
作者 杨荣国 张静 +1 位作者 翟淑琴 刘先锋 《中国激光》 EI CAS CSCD 北大核心 2014年第3期266-270,共5页
将Nd:YVO4-KTP固体激光器输出的532nm和1064nm激光分别作为抽运光和种子光注入一个内置周期极化磷酸氧钛晶体的简并光学参量放大器,通过非线性光学参量过程产生明亮的高阶横模TEM01正交振幅压缩态光场,利用平衡零拍探测系统测得其压缩度... 将Nd:YVO4-KTP固体激光器输出的532nm和1064nm激光分别作为抽运光和种子光注入一个内置周期极化磷酸氧钛晶体的简并光学参量放大器,通过非线性光学参量过程产生明亮的高阶横模TEM01正交振幅压缩态光场,利用平衡零拍探测系统测得其压缩度为2.2dB,利用数字存储示波器记录经信号处理系统变换的数据,再通过自编的软件利用量子层析测量技术得到了该压缩态光场在相空间的Wigner准概率分布函数,并将其与理论结果作了对比,两者基本一致。 展开更多
关键词 量子光学 压缩态光场 高阶厄密高斯模 光学参量放大器 Wigner准概率分布函数
原文传递
准概率分布函数与光场压缩效应 被引量:1
7
作者 夏云杰 闫珂柱 梁志霞 《光电子.激光》 EI CAS CSCD 北大核心 1996年第5期310-313,共4页
本文研究光场准概率分布函数与光场压缩之间的关系,并详细讨论了具有高斯型Q函数或负P表示光场的压缩性质.
关键词 准概率分布函数 光场压缩效应 量子光学
原文传递
原子-分子玻色-爱因斯坦凝聚系统中Q函数和量子动力学研究 被引量:1
8
作者 郭俊杰 谢征微 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期340-344,共5页
利用数值对角化方法和相空间中准几率分布函数Q函数,研究了原子-分子玻色-爱因斯坦凝聚体系统当初态处于福克态和相干态时的时间演化行为.在此基础上,通过不同时刻原子和分子准几率分布的比较,分析了在上述2种不同性质的初态下,非线性... 利用数值对角化方法和相空间中准几率分布函数Q函数,研究了原子-分子玻色-爱因斯坦凝聚体系统当初态处于福克态和相干态时的时间演化行为.在此基础上,通过不同时刻原子和分子准几率分布的比较,分析了在上述2种不同性质的初态下,非线性相互作用对原子-分子玻色-爱因斯坦凝聚体系统布居数以及量子涨落的影响. 展开更多
关键词 原子-分子 玻色-爱因斯坦凝聚体 准几率分布函数 非线性相互作用
下载PDF
平移激发奇偶相干态的非经典性质
9
作者 王荣 吴炜 刘玉洁 《辽宁大学学报(自然科学版)》 CAS 2004年第2期132-135,共4页
介绍了平移激发奇、偶相干态的非经典性质,计算了它们的准几率分布函数:P函数,Q函数和Wigner函数,并以平移激发偶相干态为例讨论了后两个函数在m与β取不同值时的变化.
关键词 平移激发奇偶相干态 非经典效应 准几率分布函数 量子光学
下载PDF
含时简并参量振荡系统的玻色子分布
10
作者 党兰芬 《河北大学学报(自然科学版)》 CAS 1997年第S1期16-19,49,共5页
利用含时简并参量振荡系统的时间演化么正算符及时间演化量子态,计算该系统的时间演化态的玻色子分布函数及准概率密度。
关键词 玻色子分布函数 准概率密度
下载PDF
如何给工科大学生讲量子力学
11
作者 李柳青 《工科物理》 2000年第4期16-19,共4页
本文论述在量子力学中引入Wigner准概率分布函数,通过与统计物理类比,为理解量子力学打开了方便之门.
关键词 相关 波函数 期望值 量子力学 教学
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部