In this paper, we explore some weakly consistent properties of quasi-maximum likelihood estimates (QMLE) concerning the quasi-likelihood equation $ \sum\nolimits_{i = 1}^n {X_i (y_i - \mu (X_i^\prime \beta ))} $ for u...In this paper, we explore some weakly consistent properties of quasi-maximum likelihood estimates (QMLE) concerning the quasi-likelihood equation $ \sum\nolimits_{i = 1}^n {X_i (y_i - \mu (X_i^\prime \beta ))} $ for univariate generalized linear model E(y|X) = μ(X′β). Given uncorrelated residuals {e i = Y i ? μ(X i ′ β0), 1 ? i ? n} and other conditions, we prove that $$ \hat \beta _n - \beta _0 = O_p (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } _n^{ - 1/2} ) $$ holds, where $ \hat \beta _n $ is a root of the above equation, β 0 is the true value of parameter β and $$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } _n $$ denotes the smallest eigenvalue of the matrix S n = ∑ i=1 n X i X i ′ . We also show that the convergence rate above is sharp, provided independent non-asymptotically degenerate residual sequence and other conditions. Moreover, paralleling to the elegant result of Drygas (1976) for classical linear regression models, we point out that the necessary condition guaranteeing the weak consistency of QMLE is S n ?1 → 0, as the sample size n → ∞.展开更多
We propose a novel polynomial network autoregressive model by incorporating higher-order connected relationships to simultaneously model the effects of both direct and indirect connections. A quasimaximum likelihood e...We propose a novel polynomial network autoregressive model by incorporating higher-order connected relationships to simultaneously model the effects of both direct and indirect connections. A quasimaximum likelihood estimation method is proposed to estimate the unknown influence parameters, and we demonstrate its consistency and asymptotic normality without imposing any distribution assumption. Moreover,an extended Bayesian information criterion is set for order selection with a divergent upper order. The application of the proposed polynomial network autoregressive model is demonstrated through both the simulation and the real data analysis.展开更多
This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the q...This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the quasi-maximum likelihood method. The authors also simulates and estimates the coefficients of the simulation chain. In this paper, we consider modeling and forecasting gold chain on the free market in Hanoi, Vietnam.展开更多
One of the key research problems in financial markets is the investigation of inter-stock dependence.A good understanding in this regard is crucial for portfolio optimization.To this end,various econometric models hav...One of the key research problems in financial markets is the investigation of inter-stock dependence.A good understanding in this regard is crucial for portfolio optimization.To this end,various econometric models have been proposed.Most of them assume that the random noise associated with each subject is independent.However,dependence might still exist within this random noise.Ignoring this valuable information might lead to biased estimations and inaccurate predictions.In this article,we study a spatial autoregressive moving average model with exogenous covariates.Spatial dependence from both response and random noise is considered simultaneously.A quasi-maximum likelihood estimator is developed,and the estimated parameters are shown to be consistent and asymptotically normal.We then conduct an extensive analysis of the proposed method by applying it to the Chinese stock market data.展开更多
本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to...本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.展开更多
基金supported by the President Foundation (Grant No. Y1050)the Scientific Research Foundation(Grant No. KYQD200502) of GUCAS
文摘In this paper, we explore some weakly consistent properties of quasi-maximum likelihood estimates (QMLE) concerning the quasi-likelihood equation $ \sum\nolimits_{i = 1}^n {X_i (y_i - \mu (X_i^\prime \beta ))} $ for univariate generalized linear model E(y|X) = μ(X′β). Given uncorrelated residuals {e i = Y i ? μ(X i ′ β0), 1 ? i ? n} and other conditions, we prove that $$ \hat \beta _n - \beta _0 = O_p (\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } _n^{ - 1/2} ) $$ holds, where $ \hat \beta _n $ is a root of the above equation, β 0 is the true value of parameter β and $$ \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{\lambda } _n $$ denotes the smallest eigenvalue of the matrix S n = ∑ i=1 n X i X i ′ . We also show that the convergence rate above is sharp, provided independent non-asymptotically degenerate residual sequence and other conditions. Moreover, paralleling to the elegant result of Drygas (1976) for classical linear regression models, we point out that the necessary condition guaranteeing the weak consistency of QMLE is S n ?1 → 0, as the sample size n → ∞.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.JBK2207075)The second author was supported by National Natural Science Foundation of China(Grant Nos.71991472,12171395,11931014 and 71532001)+1 种基金the Joint Lab of Data Science and Business Intelligence at Southwestern University of Finance and Economics and the Fundamental Research Funds for the Central Universities(Grant No.JBK1806002)The fourth author was supported by the Humanity and Social Science Youth Foundation of Ministry of Education of China(Grant No.19YJC790204)。
文摘We propose a novel polynomial network autoregressive model by incorporating higher-order connected relationships to simultaneously model the effects of both direct and indirect connections. A quasimaximum likelihood estimation method is proposed to estimate the unknown influence parameters, and we demonstrate its consistency and asymptotic normality without imposing any distribution assumption. Moreover,an extended Bayesian information criterion is set for order selection with a divergent upper order. The application of the proposed polynomial network autoregressive model is demonstrated through both the simulation and the real data analysis.
文摘This paper considered an autoregressive time series where the slope contains random components with non-negative values. The authors determine the stationary condition of the series to estimate its parameters by the quasi-maximum likelihood method. The authors also simulates and estimates the coefficients of the simulation chain. In this paper, we consider modeling and forecasting gold chain on the free market in Hanoi, Vietnam.
基金supported by the Major Program of the National Natural Science Foundation of China (Grant No. 11731101)National Natural Science Foundation of China (Grant No. 11671349)+6 种基金supported by National Natural Science Foundation of China (Grant No. 72171226)the Beijing Municipal Social Science Foundation (Grant No. 19GLC052)the National Statistical Science Research Project (Grant No. 2020LZ38)supported by National Natural Science Foundation of China (Grant Nos. 71532001, 11931014, 12171395 and 71991472)the Joint Lab of Data Science and Business Intelligence at Southwestern University of Finance and Economicssupported by National Natural Science Foundation of China (Grant No. 11831008)the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science (Grant No. Klatasds-Moe-EcnuKlatasds2101)
文摘One of the key research problems in financial markets is the investigation of inter-stock dependence.A good understanding in this regard is crucial for portfolio optimization.To this end,various econometric models have been proposed.Most of them assume that the random noise associated with each subject is independent.However,dependence might still exist within this random noise.Ignoring this valuable information might lead to biased estimations and inaccurate predictions.In this article,we study a spatial autoregressive moving average model with exogenous covariates.Spatial dependence from both response and random noise is considered simultaneously.A quasi-maximum likelihood estimator is developed,and the estimated parameters are shown to be consistent and asymptotically normal.We then conduct an extensive analysis of the proposed method by applying it to the Chinese stock market data.
基金partly supported by National Natural Science Foundation of China and President Foundation of GUCAS.
文摘本文考虑多维广义线性模型的拟似然方程sum from i=1 to n X_i(y_i-μ(X_i^1β))=0,在一定条件下证明了此方程的解(?)渐近存在,并得到了其收敛速度,即■_n-β_0=O_p(■_n^(-1/2)),其中β_0为参数β的真值,■_n是方阵S_n=sum from i=1 to n X_iX_i^1的最小特征值.
基金国家自然科学基金面上项目“金融高频大数据下的风险推断及其与多元标的衍生品定价和金融风险管理的交叉融合研究”(71871132)国家自然科学基金委重大研究计划重点项目“金融大数据统计推断理论与方法及应用研究”(91546202)+1 种基金中央高校基本科研业务费(批准号:CXJJ-2019-412)专项资金资助部分受到上海市数据科技与决策前沿科学研究基地(Shanghai Research Center for Data Science and Decision Technology)资助。