The scope of the study is the spectra of low-temperature (T = 2K) photoluminescence of a p-CdTe/n-CdS film heterostructure comprising a monolayer of CdTe microcrystals, where a single microcrystalline particle is typi...The scope of the study is the spectra of low-temperature (T = 2K) photoluminescence of a p-CdTe/n-CdS film heterostructure comprising a monolayer of CdTe microcrystals, where a single microcrystalline particle is typically one micron in size. Focus is made on the dominant band of “super-hot” emission appearing in the spectral region located in energy above the fundamental absorption edge of a CdTe bulk crystal. A theoretical model has been developed that assumes the existence of a space-charge layer inside a microcrystal, which leads to the formation of a triangular potential well for an electron near the surface. The anomalous emission band arises as a result of the optical transitions of electrons from near-surface levels of spatial quantization to valence band states.展开更多
A theory of triple magnetopolarons in an isolated quantum well in a strong magnetic field was developed. We study the behavior of the magnetooptical absorption peaks corresponding to the transitions of an electron at ...A theory of triple magnetopolarons in an isolated quantum well in a strong magnetic field was developed. We study the behavior of the magnetooptical absorption peaks corresponding to the transitions of an electron at the Landau level with quantum numbers n ≥ 2. For n = 2 at the point of equality of cyclotron frequency and the frequency of optical phonon (LO), there is a cross of three terms of the electron-phonon system (the electron at the Landau level n = 2, the electron at n = 1, and the optical phonon and electron at n = 0 and two phonons), considered as a function of the cyclotron frequency. Interaction with phonons takes off the degeneracy of the terms and leads to three disjoint branches of the electron-phonon spectrum. The theory predicts that in the resonant magnetic field, the peak of magnetooptical absorption splits into three peaks, the intensity and position of which are dependent in a complex way on the magnitude of the magnetic field and the constant of the electron-phonon coupling.展开更多
文摘The scope of the study is the spectra of low-temperature (T = 2K) photoluminescence of a p-CdTe/n-CdS film heterostructure comprising a monolayer of CdTe microcrystals, where a single microcrystalline particle is typically one micron in size. Focus is made on the dominant band of “super-hot” emission appearing in the spectral region located in energy above the fundamental absorption edge of a CdTe bulk crystal. A theoretical model has been developed that assumes the existence of a space-charge layer inside a microcrystal, which leads to the formation of a triangular potential well for an electron near the surface. The anomalous emission band arises as a result of the optical transitions of electrons from near-surface levels of spatial quantization to valence band states.
文摘A theory of triple magnetopolarons in an isolated quantum well in a strong magnetic field was developed. We study the behavior of the magnetooptical absorption peaks corresponding to the transitions of an electron at the Landau level with quantum numbers n ≥ 2. For n = 2 at the point of equality of cyclotron frequency and the frequency of optical phonon (LO), there is a cross of three terms of the electron-phonon system (the electron at the Landau level n = 2, the electron at n = 1, and the optical phonon and electron at n = 0 and two phonons), considered as a function of the cyclotron frequency. Interaction with phonons takes off the degeneracy of the terms and leads to three disjoint branches of the electron-phonon spectrum. The theory predicts that in the resonant magnetic field, the peak of magnetooptical absorption splits into three peaks, the intensity and position of which are dependent in a complex way on the magnitude of the magnetic field and the constant of the electron-phonon coupling.