Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,...Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation(RSP).As one of its applications,we propose a new type of quantum secure communications,i.e.cyclic RSP protocols.Starting from a four-party controlled cyclic RSP protocol of one-qubit states,we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of arbitrary qubit states.We point out that previous bidirectional and asymmetric protocols can be regarded as a simpler form of our cyclic RSP protocols.展开更多
Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of qua...Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.展开更多
Quantum state transfer between two distant parties is at the heart of quantum computation and quantum communication.Among the various protocols,the counterdiabatic driving(CD)method,by suppressing the unwanted transit...Quantum state transfer between two distant parties is at the heart of quantum computation and quantum communication.Among the various protocols,the counterdiabatic driving(CD)method,by suppressing the unwanted transitions with an auxiliary Hamiltonian Hcd(t),offers a fast and robust strategy to transfer quantum states.However,Hcd(t)term often takes a complicated form in higherdimensional systems and is difficult to realize in experiment.Recently,the Floquet-engineered method was proposed to emulate the dynamics induced by Hcd(t)without the need for complex interactions in multi-qubit systems,which can accelerate the adiabatic process through the fast-oscillating control in the original Hamiltonian H0(t).Here,we apply this method in the Heisenberg spin chains,with only control of the two marginal couplings,to achieve the fast,high-fidelity,and robust quantum state transfer.Then we report an experimental implementation of our scheme using a nuclear magnetic resonance simulator.The experimental results demonstrate the feasibility of this method in complex many-body system and thus provide a new alternative to realize the high-fidelity quantum state manipulation in practice.展开更多
The dynamic evolution of a multi-level atom in the three-dimensional photonic crystal under an applied magnetic field is investigated.By combining the Zeeman effect with the photonic band gap effect,the dynamic quantu...The dynamic evolution of a multi-level atom in the three-dimensional photonic crystal under an applied magnetic field is investigated.By combining the Zeeman effect with the photonic band gap effect,the dynamic quantum superposition states and steady quantum coherent trapping states of the atom can be flexibly controlled.This paves the way for coherent manipulation of quantum states in the solid-state system,which has important applications in quantum information processing.展开更多
Reinforcement learning is one of the fastest growing areas in machine learning,and has obtained great achievements in biomedicine,Internet of Things(IoT),logistics,robotic control,etc.However,there are still many chal...Reinforcement learning is one of the fastest growing areas in machine learning,and has obtained great achievements in biomedicine,Internet of Things(IoT),logistics,robotic control,etc.However,there are still many challenges for engineering applications,such as how to speed up the learning process,how to balance the trade-of between exploration and exploitation.Quantum technology,which can solve complex problems faster than classical methods,especially in supercomputers,provides us a new paradigm to overcome these challenges in reinforcement learning.In this paper,a quantum-enhanced reinforcement learning is pictured for optimal control.In this algorithm,the states and actions of reinforcement learning are quantized by quantum technology.And then,a probability amplifcation method,which can efectively avoid the trade-of between exploration and exploitation via quantized technology,is presented.Finally,the optimal control policy is learnt during the process of reinforcement learning.The performance of this quantized algorithm is demonstrated in both MountainCar reinforcement learning environment and CartPole reinforcement learning environment—one kind of classical control reinforcement learning environment in the OpenAI Gym.The preliminary study results validate that,compared with Q-learning,this quantized reinforcement learning method has better control performance without considering the trade-of between exploration and exploitation.The learning performance of this new algorithm is stable with diferent learning rates from 0.01 to 0.10,which means it is promising to be employed in unknown dynamics systems.展开更多
A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on...A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.展开更多
The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman...The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman scattering with sequential or simultaneous ultrashort pulses are investigated respectively. We find that the ultrashort pulses with about two optical cycles can be used to realize the population operation. This suggests that the population transfer can be completed in the femtosecond time scale. At the same time, our simulation shows that the signal of the carrier-envelope-phase-dependent effect can be enlarged due to quantum interference in some conditions. Our theoretic study may promote the research on the coherent control via ultrashort pulses in the related fields.展开更多
文摘Quantum secure communications could securely transmit quantum information by using quantum resource.Recently,novel applications such as bidirectional and asymmetric quantum protocols have been developed.In this paper,we propose a new method for generating entanglement which is highly useful for multiparty quantum communications such as teleportation and Remote State Preparation(RSP).As one of its applications,we propose a new type of quantum secure communications,i.e.cyclic RSP protocols.Starting from a four-party controlled cyclic RSP protocol of one-qubit states,we show that this cyclic protocol can be generalized to a multiparty controlled cyclic RSP protocol for preparation of arbitrary qubit states.We point out that previous bidirectional and asymmetric protocols can be regarded as a simpler form of our cyclic RSP protocols.
文摘Formal state space models of quantum control systems are deduced and a scheme to establish formal state space models via quantization could been obtained for quantum control systems is proposed. State evolution of quantum control systems must accord with Schrdinger equations, so it is foremost to obtain Hamiltonian operators of systems. There are corresponding relations between operators of quantum systems and corresponding physical quantities of classical systems, such as momentum, energy and Hamiltonian, so Schrdinger equation models of corresponding quantum control systems via quantization could been obtained from classical control systems, and then establish formal state space models through the suitable transformation from Schrdinger equations for these quantum control systems. This method provides a new kind of path for modeling in quantum control.
基金financially supported by the National Natural Science Foundation of China (11847016, 11425523 and 11661161018)National Key Research and Development Program of China (2018YFA0306600)Anhui Initiative in Quantum Information Technologies (AHY050000)
文摘Quantum state transfer between two distant parties is at the heart of quantum computation and quantum communication.Among the various protocols,the counterdiabatic driving(CD)method,by suppressing the unwanted transitions with an auxiliary Hamiltonian Hcd(t),offers a fast and robust strategy to transfer quantum states.However,Hcd(t)term often takes a complicated form in higherdimensional systems and is difficult to realize in experiment.Recently,the Floquet-engineered method was proposed to emulate the dynamics induced by Hcd(t)without the need for complex interactions in multi-qubit systems,which can accelerate the adiabatic process through the fast-oscillating control in the original Hamiltonian H0(t).Here,we apply this method in the Heisenberg spin chains,with only control of the two marginal couplings,to achieve the fast,high-fidelity,and robust quantum state transfer.Then we report an experimental implementation of our scheme using a nuclear magnetic resonance simulator.The experimental results demonstrate the feasibility of this method in complex many-body system and thus provide a new alternative to realize the high-fidelity quantum state manipulation in practice.
基金supported by the National Key Basic Research Special Foundation of China (Grant Nos. 2006CB921706 and 2010CB923200)the National Natural Science Foundation of China (Grant Nos. 10574160 and10725420)
文摘The dynamic evolution of a multi-level atom in the three-dimensional photonic crystal under an applied magnetic field is investigated.By combining the Zeeman effect with the photonic band gap effect,the dynamic quantum superposition states and steady quantum coherent trapping states of the atom can be flexibly controlled.This paves the way for coherent manipulation of quantum states in the solid-state system,which has important applications in quantum information processing.
文摘Reinforcement learning is one of the fastest growing areas in machine learning,and has obtained great achievements in biomedicine,Internet of Things(IoT),logistics,robotic control,etc.However,there are still many challenges for engineering applications,such as how to speed up the learning process,how to balance the trade-of between exploration and exploitation.Quantum technology,which can solve complex problems faster than classical methods,especially in supercomputers,provides us a new paradigm to overcome these challenges in reinforcement learning.In this paper,a quantum-enhanced reinforcement learning is pictured for optimal control.In this algorithm,the states and actions of reinforcement learning are quantized by quantum technology.And then,a probability amplifcation method,which can efectively avoid the trade-of between exploration and exploitation via quantized technology,is presented.Finally,the optimal control policy is learnt during the process of reinforcement learning.The performance of this quantized algorithm is demonstrated in both MountainCar reinforcement learning environment and CartPole reinforcement learning environment—one kind of classical control reinforcement learning environment in the OpenAI Gym.The preliminary study results validate that,compared with Q-learning,this quantized reinforcement learning method has better control performance without considering the trade-of between exploration and exploitation.The learning performance of this new algorithm is stable with diferent learning rates from 0.01 to 0.10,which means it is promising to be employed in unknown dynamics systems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61068001 and 11264042)the Postdoctoral Science Foundation of China(Grant No.2012M520612)the Talent Program of Yanbian University of China(Grant No.950010001)
文摘A robust and scalable scheme to generate a steady three-dimensional entangled state for a V-type atom and a A- type atom trapped in a strongly dissipative bimodal cavity is proposed by direct feedback control based on quantum-jump detection. The robustness of this scheme reflects in the insensitivity to detection inefficiencies and the strong ability against the parameter fluctuations in the feedback, driving, and coupling strengths. The influence of atomic spontaneous emission can be suppressed by using the local feedback control. The scalability is ensured that N-dimensional entangled states of two atoms can be deterministically generated.
基金Project supported by the National Natural Science Foundation of China(Grant No.61008016)the Natural Science Foundation in Shaanxi Province,China(Grant No.2010JQ1002)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20106101120020)
文摘The feasibility of population transfer from a populated level via an intermediate state to the target level driven by few-cycle pulses is theoretically discussed. The processes of on- or far-resonance stimulated Raman scattering with sequential or simultaneous ultrashort pulses are investigated respectively. We find that the ultrashort pulses with about two optical cycles can be used to realize the population operation. This suggests that the population transfer can be completed in the femtosecond time scale. At the same time, our simulation shows that the signal of the carrier-envelope-phase-dependent effect can be enlarged due to quantum interference in some conditions. Our theoretic study may promote the research on the coherent control via ultrashort pulses in the related fields.