In this paper, the relationship between solutions of the Quantum Yang-Baxter Equation and quantum comodules, and some properties of the quantum comodule category are characterized here. These results make it possible ...In this paper, the relationship between solutions of the Quantum Yang-Baxter Equation and quantum comodules, and some properties of the quantum comodule category are characterized here. These results make it possible to give some set-theoretical solutions of the Quantum Yang-Baxter Equation.展开更多
Cycle sets were introduced to reduce non-degenerate unitary Yang-Baxter maps to an algebraic system with a single binary operation. Every finite cycle set extends uniquely to a finite cycle set with a compatible abeli...Cycle sets were introduced to reduce non-degenerate unitary Yang-Baxter maps to an algebraic system with a single binary operation. Every finite cycle set extends uniquely to a finite cycle set with a compatible abelian group structure. Etingof et al. introduced affine Yang-Baxter maps. These are equivalent to cycle sets with a specific abelian group structure. Abelian group structures have also been essential to get partial results for the still unsolved retraction problem. We introduce two new classes of cycle sets with an underlying abelian group structure and show that they can be transformed into each other while keeping the group structure fixed. This leads to a proper extension of the retractibility conjecture and new evidence for its truth.展开更多
In these two papers (I) and (II), the singular upper triangle type solutions with spin 1/2 of quantum Yang-Baxter equation are given. In the Paper (I), we give the Yang-Baxter equation and give the general solutions o...In these two papers (I) and (II), the singular upper triangle type solutions with spin 1/2 of quantum Yang-Baxter equation are given. In the Paper (I), we give the Yang-Baxter equation and give the general solutions of some function equations for the next paper.展开更多
In these two papers (Ⅰ) and (Ⅱ),the singular upper triangle type solutions with spin 1/2 of quantum Yang-Baxter equation are given.In the Paper (Ⅱ),we give the general solutions of the Yang-Baxter equation in this ...In these two papers (Ⅰ) and (Ⅱ),the singular upper triangle type solutions with spin 1/2 of quantum Yang-Baxter equation are given.In the Paper (Ⅱ),we give the general solutions of the Yang-Baxter equation in this case.展开更多
基金Supported by China Postdoctoral Science Foundation(2017M611291)Foundation for Young Key Teacher by Henan Province(2015GGJS-088)Natural Science Foundation of Henan Province(17A110007)
文摘In this paper, the relationship between solutions of the Quantum Yang-Baxter Equation and quantum comodules, and some properties of the quantum comodule category are characterized here. These results make it possible to give some set-theoretical solutions of the Quantum Yang-Baxter Equation.
文摘Cycle sets were introduced to reduce non-degenerate unitary Yang-Baxter maps to an algebraic system with a single binary operation. Every finite cycle set extends uniquely to a finite cycle set with a compatible abelian group structure. Etingof et al. introduced affine Yang-Baxter maps. These are equivalent to cycle sets with a specific abelian group structure. Abelian group structures have also been essential to get partial results for the still unsolved retraction problem. We introduce two new classes of cycle sets with an underlying abelian group structure and show that they can be transformed into each other while keeping the group structure fixed. This leads to a proper extension of the retractibility conjecture and new evidence for its truth.
文摘In these two papers (I) and (II), the singular upper triangle type solutions with spin 1/2 of quantum Yang-Baxter equation are given. In the Paper (I), we give the Yang-Baxter equation and give the general solutions of some function equations for the next paper.
文摘In these two papers (Ⅰ) and (Ⅱ),the singular upper triangle type solutions with spin 1/2 of quantum Yang-Baxter equation are given.In the Paper (Ⅱ),we give the general solutions of the Yang-Baxter equation in this case.