A model of an irreversible quantum Carnot heat engine with heat resistance,internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum mas...A model of an irreversible quantum Carnot heat engine with heat resistance,internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach,equations of some important performance parameters,such as power output,efficiency,exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.展开更多
The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants are associated with quantum integers, n, within a classic integer and partial harmonic fraction system, and follow...The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants are associated with quantum integers, n, within a classic integer and partial harmonic fraction system, and follow a known two-dimensional, 2D, power law geometry. These are exponents of a fundamental frequency, vF, the basis of which is the annhilation frequency of the neutron, vn0. Our goal to a first approximation is to derive the frequency equivalents of the Rydberg constant, vR, the Bohr radius, va0, the electron, ve-, and the reciprocal fine structure constant, 1/α all from vn0, π, and a small set of prime integers only. The primes used in the derivations are respectively 2, 3, 5, 7, and 11. This is possible since it is known that the number 3 is associated with R, 5 with a0, 7 with e-, and 11 with 1/α. In addition, the interrelationships of the frequency ratio equivalents of these natural units with 2 and π are known, thus allowing for the derivation of any one from the others. Also the integer and partial fractions of a0, e-, and n0 define Planck time squared, tP2. An accurate estimate of tP2 from vF alone is also related to the integer 2 since gravity is a kinetic force. Planck time squared, tP2 scales the Y-axis, and vF scales the X-axis. In conclusion the quantum properties of hydrogen are derived from only the natural unit physical data of the neutron, to a relative precision ranging from 2.6 × 10-3 to 6.7 × 10-4. This supports the hypothesis that many of the fundamental constants are related to vn0.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 50846040)Program for New Century Excellent Talents in University (Grant No. NCET-04-1006)the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (Grant No. 200136)
文摘A model of an irreversible quantum Carnot heat engine with heat resistance,internal irreversibility and heat leakage and many non-interacting harmonic oscillators is established in this paper. Based on the quantum master equation and semi-group approach,equations of some important performance parameters,such as power output,efficiency,exergy loss rate and ecological function for the irreversible quantum Carnot heat engine are derived. The optimal ecological performance of the heat engine in the classical limit is analyzed with numerical examples. Effects of internal irreversibility and heat leakage on the ecological performance are discussed. A performance comparison of the quantum heat engine under maximum ecological function and maximum power conditions is also performed.
文摘The Harmonic Neutron Hypothesis, HNH, has demonstrated that many of the fundamental physical constants are associated with quantum integers, n, within a classic integer and partial harmonic fraction system, and follow a known two-dimensional, 2D, power law geometry. These are exponents of a fundamental frequency, vF, the basis of which is the annhilation frequency of the neutron, vn0. Our goal to a first approximation is to derive the frequency equivalents of the Rydberg constant, vR, the Bohr radius, va0, the electron, ve-, and the reciprocal fine structure constant, 1/α all from vn0, π, and a small set of prime integers only. The primes used in the derivations are respectively 2, 3, 5, 7, and 11. This is possible since it is known that the number 3 is associated with R, 5 with a0, 7 with e-, and 11 with 1/α. In addition, the interrelationships of the frequency ratio equivalents of these natural units with 2 and π are known, thus allowing for the derivation of any one from the others. Also the integer and partial fractions of a0, e-, and n0 define Planck time squared, tP2. An accurate estimate of tP2 from vF alone is also related to the integer 2 since gravity is a kinetic force. Planck time squared, tP2 scales the Y-axis, and vF scales the X-axis. In conclusion the quantum properties of hydrogen are derived from only the natural unit physical data of the neutron, to a relative precision ranging from 2.6 × 10-3 to 6.7 × 10-4. This supports the hypothesis that many of the fundamental constants are related to vn0.