This paper studies conformal invariance and conserved quantities of Hamilton system. The definition and the determining equation of conformal invariance for Hamilton system are provided. The relationship between the c...This paper studies conformal invariance and conserved quantities of Hamilton system. The definition and the determining equation of conformal invariance for Hamilton system are provided. The relationship between the conformal invariance and the Lie symmetry are discussed, and the necessary and sufficient condition that the conformal invariance would be the Lie symmetry of the system under the infinitesimal one-parameter transformation group is deduced. It gives the conserved quantities of the system and an example for illustration.展开更多
This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev non...This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.展开更多
This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equati...This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.展开更多
A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the d...A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.展开更多
A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holono...A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holonomic mechanical system with unilateral constraints are established. The definition and the criterion of Mei symmetry for Nielsen equations in the holonomic systems with unilateral constraints under the infinitesimal transformations of Lie group are also given. The expressions of the structural equation and a type of new conserved quantity of Mei symmetry for Nielsen equations in the holonomic system with unilateral constraints are obtained. An example is given to illustrate the application of the results.展开更多
The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system,...The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.展开更多
A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity ...A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.展开更多
We construct and analyze a family of semi-discretized difference schemes with two parameters for the Korteweg-de Vries (KdV) equation. The scheme possesses the first four near-conserved quantities for periodic boundar...We construct and analyze a family of semi-discretized difference schemes with two parameters for the Korteweg-de Vries (KdV) equation. The scheme possesses the first four near-conserved quantities for periodic boundary conditions. The existence and the convergence of its global solution in Sobolev space L-infinity(0,T;H-3) are proved and the scheme is also stable about initial values. Furthermore, the scheme conserves exactly the first two conserved quantities in the special case.展开更多
The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Ni...The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022)
文摘This paper studies conformal invariance and conserved quantities of Hamilton system. The definition and the determining equation of conformal invariance for Hamilton system are provided. The relationship between the conformal invariance and the Lie symmetry are discussed, and the necessary and sufficient condition that the conformal invariance would be the Lie symmetry of the system under the infinitesimal one-parameter transformation group is deduced. It gives the conserved quantities of the system and an example for illustration.
基金Project supported by the National Natural Science Foundation of China (Grant No 10572021)
文摘This paper investigates structure equation and Mei conserved quantity of Mei symmetry of Appell equations for non-Chetaev nonholonomic systems. Appell equations and differential equations of motion for non-Chetaev nonholonomic mechanical systems are established. A new expression of the total derivative of the function with respect to time t along the trajectory of a curve of the system is obtained, the definition and the criterion of Mei symmetry of Appell equations under the infinitesimal transformations of groups are also given. The expressions of the structure equation and the Mei conserved quantity of Mei symmetry in the Appell function are obtained. An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10272021) and the Doctoral Program Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘This paper focuses on studying the Lie symmetry and a conserved quantity of a system of first-order differential equations. The determining equations of the Lie symmetry for a system of first-order differential equations, from which a kind of conserved quantity is deduced, are presented. And their general conclusion is applied to a Hamilton system, a Birkhoff system and a generalized Hamilton system. Two examples are given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11142014 and 61178032)
文摘A type of structural equation and conserved quantity which are directly induced by Mei symmetry of Nielsen equations for a holonomic system are studied. Under the infinitesimal transformation of the groups, from the definition and the criterion of Mei symmetry, a type of structural equation and conserved quantity for the system by proposition 2 are obtained, and the inferences in two special cases are given. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11142014 and 61178032)the Scientific Research and Innovation Plan for College Graduates of Jiangsu Province of China(Grant No.CSLX12_0720)
文摘A type of new conserved quantity deduced from Mei symmetry for Nielsen equations in a holonomic system with unilateral constraints is investigated. Nielsen equations and differential equations of motion for the holonomic mechanical system with unilateral constraints are established. The definition and the criterion of Mei symmetry for Nielsen equations in the holonomic systems with unilateral constraints under the infinitesimal transformations of Lie group are also given. The expressions of the structural equation and a type of new conserved quantity of Mei symmetry for Nielsen equations in the holonomic system with unilateral constraints are obtained. An example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant No 10572021)the Preparatory Research Foundation of Jiangnan University,China(Grant No 2008LYY011)
文摘The Mei symmetry and Mei conserved quantity of the Nielsen equation for a non-Chetaewtype non-holonomic non-conservative system are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Mei symmetry and the condition and the form of Mei conserved quantities deduced directly from the Mei symmetry for the system are obtained. Finally, an example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10572021)the Preparatory Research Foundation of Jiangnan University of China (Grant No. 2008LYY011)
文摘A type of new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints is investigated. The expressions of new structural equation and new conserved quantity deduced from Mei symmetry of Appell equations for a holonomic system with unilateral constraints expressed by Appell functions are obtained. An example is given to illustrate the application of the results.
文摘We construct and analyze a family of semi-discretized difference schemes with two parameters for the Korteweg-de Vries (KdV) equation. The scheme possesses the first four near-conserved quantities for periodic boundary conditions. The existence and the convergence of its global solution in Sobolev space L-infinity(0,T;H-3) are proved and the scheme is also stable about initial values. Furthermore, the scheme conserves exactly the first two conserved quantities in the special case.
文摘The Lie symmetry and Hojman conserved quantity of Nielsen equations in a dynamical system of relative motion with nonholonomic constraint of the Chetaev type are studied. The differential equations of motion of the Nielsen equation for the system, the definition and the criterion of Lie symmetry, and the expression of the Hojman conserved quantity deduced directly from the Lie symmetry for the system are obtained. An example is given to illustrate the application of the results.