For bottom water reservoir and the reservoir with a thick oil formation, there exists partial penetration completion well and when the well products the oil flow in the porous media takes on spherical percolation. The...For bottom water reservoir and the reservoir with a thick oil formation, there exists partial penetration completion well and when the well products the oil flow in the porous media takes on spherical percolation. The nonlinear spheri-cal flow equation with the quadratic gradient term is deduced in detail based on the mass conservation principle, and then it is found that the linear percolation is the approximation and simplification of nonlinear percolation. The nonlinear spherical percolation physical and mathematical model under different external boundaries is established, considering the ef-fect of wellbore storage. By variable substitu-tion, the flow equation is linearized, then the Laplace space analytic solution under different external boundaries is obtained and the real space solution is also gotten by use of the nu-merical inversion, so the pressure and the pressure derivative bi-logarithmic nonlinear spherical percolation type curves are drawn up at last. The characteristics of the nonlinear spherical percolation are analyzed, and it is found that the new nonlinear percolation type curves are evidently different from linear per-colation type curves in shape and characteris-tics, the pressure curve and pressure derivative curve of nonlinear percolation deviate from those of linear percolation. The theoretical off-set of the pressure and the pressure derivative between the linear and the nonlinear solution are analyzed, and it is also found that the in-fluence of the quadratic pressure gradient is very distinct, especially for the low permeabil-ity and heavy oil reservoirs. The influence of the non-linear term upon the spreading of pressure is very distinct on the process of percolation, and the nonlinear percolation law stands for the actual oil percolation law in res-ervoir, therefore the research on nonlinear per-colation theory should be strengthened and reinforced.展开更多
A relatively high formation pressure gradient can exist in seepage flow in low-permeable porous media with a threshold pressure gradient, and a significant error may then be caused in the model computation by neglecti...A relatively high formation pressure gradient can exist in seepage flow in low-permeable porous media with a threshold pressure gradient, and a significant error may then be caused in the model computation by neglecting the quadratic pressure gradient term in the governing equations. Based on these concerns, in consideration of the quadratic pressure gradient term, a basic moving boundary model is constructed for a one-dimensional seepage flow problem with a threshold pressure gradient. Owing to a strong nonlinearity and the existing moving boundary in the mathematical model, a corresponding numerical solution method is presented. First, a spatial coordinate transformation method is adopted in order to transform the system of partial differential equa- tions with moving boundary conditions into a closed system with fixed boundary conditions; then the solution can be sta- bly numerically obtained by a fully implicit finite-difference method. The validity of the numerical method is verified by a published exact analytical solution. Furthermore, to compare with Darcy's flow problem, the exact analytical solution for the case of Darcy's flow considering the quadratic pressure gradient term is also derived by an inverse Laplace transform. A comparison of these model solutions leads to the conclu- sion that such moving boundary problems must incorporate the quadratic pressure gradient term in their governing equa- tions; the sensitive effects of the quadratic pressure gradient term tend to diminish, with the dimensionless threshold pres- sure gradient increasing for the one-dimensional problem.展开更多
文摘For bottom water reservoir and the reservoir with a thick oil formation, there exists partial penetration completion well and when the well products the oil flow in the porous media takes on spherical percolation. The nonlinear spheri-cal flow equation with the quadratic gradient term is deduced in detail based on the mass conservation principle, and then it is found that the linear percolation is the approximation and simplification of nonlinear percolation. The nonlinear spherical percolation physical and mathematical model under different external boundaries is established, considering the ef-fect of wellbore storage. By variable substitu-tion, the flow equation is linearized, then the Laplace space analytic solution under different external boundaries is obtained and the real space solution is also gotten by use of the nu-merical inversion, so the pressure and the pressure derivative bi-logarithmic nonlinear spherical percolation type curves are drawn up at last. The characteristics of the nonlinear spherical percolation are analyzed, and it is found that the new nonlinear percolation type curves are evidently different from linear per-colation type curves in shape and characteris-tics, the pressure curve and pressure derivative curve of nonlinear percolation deviate from those of linear percolation. The theoretical off-set of the pressure and the pressure derivative between the linear and the nonlinear solution are analyzed, and it is also found that the in-fluence of the quadratic pressure gradient is very distinct, especially for the low permeabil-ity and heavy oil reservoirs. The influence of the non-linear term upon the spreading of pressure is very distinct on the process of percolation, and the nonlinear percolation law stands for the actual oil percolation law in res-ervoir, therefore the research on nonlinear per-colation theory should be strengthened and reinforced.
基金funding by the project (Grant 51404232) sponsored by the National Natural Science Foundation of Chinathe National Science and Technology Major Project (Grant 2011ZX05038003)+1 种基金the China Postdoctoral Science Foundation project (Grant 2014M561074)the China Scholarship Council for its generous financial support of the research
文摘A relatively high formation pressure gradient can exist in seepage flow in low-permeable porous media with a threshold pressure gradient, and a significant error may then be caused in the model computation by neglecting the quadratic pressure gradient term in the governing equations. Based on these concerns, in consideration of the quadratic pressure gradient term, a basic moving boundary model is constructed for a one-dimensional seepage flow problem with a threshold pressure gradient. Owing to a strong nonlinearity and the existing moving boundary in the mathematical model, a corresponding numerical solution method is presented. First, a spatial coordinate transformation method is adopted in order to transform the system of partial differential equa- tions with moving boundary conditions into a closed system with fixed boundary conditions; then the solution can be sta- bly numerically obtained by a fully implicit finite-difference method. The validity of the numerical method is verified by a published exact analytical solution. Furthermore, to compare with Darcy's flow problem, the exact analytical solution for the case of Darcy's flow considering the quadratic pressure gradient term is also derived by an inverse Laplace transform. A comparison of these model solutions leads to the conclu- sion that such moving boundary problems must incorporate the quadratic pressure gradient term in their governing equa- tions; the sensitive effects of the quadratic pressure gradient term tend to diminish, with the dimensionless threshold pres- sure gradient increasing for the one-dimensional problem.