We present a direct analytical algorithm for solving transportation problems with quadratic function cost coefficients. The algorithm uses the concept of absolute points developed by the authors in earlier works. The ...We present a direct analytical algorithm for solving transportation problems with quadratic function cost coefficients. The algorithm uses the concept of absolute points developed by the authors in earlier works. The versatility of the proposed algorithm is evidenced by the fact that quadratic functions are often used as approximations for other functions, as in, for example, regression analysis. As compared with the earlier international methods for quadratic transportation problem (QTP) which are based on the Lagrangian relaxation approach, the proposed algorithm helps to understand the structure of the QTP better and can guide in managerial decisions. We present a numerical example to illustrate the application of the proposed method.展开更多
This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Fir...This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.展开更多
在多电机系统有限集模型预测控制(finite control set model predictive control,FCS-MPC)中,随着电机数量的增加,加权求和型价值函数中权重系数的数量也随之增加,整定变得困难。对此,在对双电机转矩同步系统进行统一建模的基础上,通过...在多电机系统有限集模型预测控制(finite control set model predictive control,FCS-MPC)中,随着电机数量的增加,加权求和型价值函数中权重系数的数量也随之增加,整定变得困难。对此,在对双电机转矩同步系统进行统一建模的基础上,通过构造二次型价值函数,将3个权重系数的整定问题转化为1个权重系数矩阵的求解问题。在二次型价值函数中应用由离线求解算法得到的权重系数矩阵能够保证系统的李雅普诺夫稳定性,从而可在连续控制周期内保证各误差收敛。在齿轮传动双电机转矩同步控制系统实验平台上对该算法进行实验验证,结果表明:将离线自整定后的权重系数矩阵用于二次型价值函数中,能使FCS-MPC控制下电机的跟踪误差和同步误差具有良好的收敛性。从理论和实验上证明了基于二次型价值函数的FCS-MPC算法能保证各电机较好的跟踪性能和转矩同步性能,同时该控制策略为拓展到多电机系统提供了可能。展开更多
文摘We present a direct analytical algorithm for solving transportation problems with quadratic function cost coefficients. The algorithm uses the concept of absolute points developed by the authors in earlier works. The versatility of the proposed algorithm is evidenced by the fact that quadratic functions are often used as approximations for other functions, as in, for example, regression analysis. As compared with the earlier international methods for quadratic transportation problem (QTP) which are based on the Lagrangian relaxation approach, the proposed algorithm helps to understand the structure of the QTP better and can guide in managerial decisions. We present a numerical example to illustrate the application of the proposed method.
文摘This paper presents an efficient analytical approach using Composite Cost Function (CCF) for solving the Economic Dispatch problem with Multiple Fuel Options (EDMFO). The solution methodology comprises two stages. Firstly, the CCF of the plant is developed and the most economical fuel of each set can be easily identified for any load demand. In the next stage, for the selected fuels, CCF is evaluated and the optimal scheduling is obtained. The Proposed Method (PM) has been tested on the standard ten-generation set system;each set consists of two or three fuel options. The total fuel cost obtained by the PM is compared with earlier reports in order to validate its effectiveness. The comparison clears that this approach is a promising alterna-tive for solving EDMFO problems in practical power system.
文摘在多电机系统有限集模型预测控制(finite control set model predictive control,FCS-MPC)中,随着电机数量的增加,加权求和型价值函数中权重系数的数量也随之增加,整定变得困难。对此,在对双电机转矩同步系统进行统一建模的基础上,通过构造二次型价值函数,将3个权重系数的整定问题转化为1个权重系数矩阵的求解问题。在二次型价值函数中应用由离线求解算法得到的权重系数矩阵能够保证系统的李雅普诺夫稳定性,从而可在连续控制周期内保证各误差收敛。在齿轮传动双电机转矩同步控制系统实验平台上对该算法进行实验验证,结果表明:将离线自整定后的权重系数矩阵用于二次型价值函数中,能使FCS-MPC控制下电机的跟踪误差和同步误差具有良好的收敛性。从理论和实验上证明了基于二次型价值函数的FCS-MPC算法能保证各电机较好的跟踪性能和转矩同步性能,同时该控制策略为拓展到多电机系统提供了可能。