为了进一步减少无线传感器网络的能量损耗和延迟时间并且有效延长节点生存时间,提出一种改进的量子行为粒子群(quantum based particle swarm optimization,QPSO)优化算法,并将其用于解决无线传感器网络的QoS组播路由问题。该算法采用...为了进一步减少无线传感器网络的能量损耗和延迟时间并且有效延长节点生存时间,提出一种改进的量子行为粒子群(quantum based particle swarm optimization,QPSO)优化算法,并将其用于解决无线传感器网络的QoS组播路由问题。该算法采用适应度函数和全局最好位置的更新方法来寻找无线传感器网络中满足阈值限制下的最优路由。实验仿真和对比情况表明,该算法在节省能量损耗、控制延迟时间和延长网络节点的生存时间上取得了较好的效果。展开更多
文摘为了进一步减少无线传感器网络的能量损耗和延迟时间并且有效延长节点生存时间,提出一种改进的量子行为粒子群(quantum based particle swarm optimization,QPSO)优化算法,并将其用于解决无线传感器网络的QoS组播路由问题。该算法采用适应度函数和全局最好位置的更新方法来寻找无线传感器网络中满足阈值限制下的最优路由。实验仿真和对比情况表明,该算法在节省能量损耗、控制延迟时间和延长网络节点的生存时间上取得了较好的效果。