期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
1961—2010年青藏高原气候变化特征分析 被引量:60
1
作者 徐丽娇 胡泽勇 +1 位作者 赵亚楠 洪潇宇 《高原气象》 CSCD 北大核心 2019年第5期911-919,共9页
利用1961-2010年青藏高原及其周边地区158个气象站温度(包括平均温度、最低和最高温度)、降水和风速资料,对青藏高原的气候变化特征进行了分析。结果表明:(1)1961-2010年青藏高原主体正在变暖变湿,但是高原东侧部分地区正在变暖变干,同... 利用1961-2010年青藏高原及其周边地区158个气象站温度(包括平均温度、最低和最高温度)、降水和风速资料,对青藏高原的气候变化特征进行了分析。结果表明:(1)1961-2010年青藏高原主体正在变暖变湿,但是高原东侧部分地区正在变暖变干,同时高原整体风速都在减小。(2)升温主要是夜间的最低温度贡献的。不同地区升温速率有差异,中部地区高于东部地区;平均温度和最高温度分别在1994年和1997年发生突变,突变后升温速率明显加快;三种温度都存在准8年周期震荡,其他短周期及更长周期震荡表现不一致。(3)降水量空间分布上表现为从东南向西北逐级减少,并且出现过多次突变,突变时间分别为1965年、1977年和1995年,突变前后降水的变化速率明显不同,降水存在准4年和准10年周期震荡。风速存在18~20年周期震荡。(4)青藏高原平均温度、最低温度及最高温度EOF分解的第一载荷向量均表现出全区一致的正值,中心区位于94°E97°E一带,说明青藏高原腹地是平均温度、最低温度及最高温度变化最敏感的地区。(5)平均温度、最低温度及最高温度EOF分解的第二载荷向量大体表现出高原主体与东部以及北部边缘地带变化趋势相反,即高原主体升温(降温)时,东部及北部边缘地带是降温(升温)的。 展开更多
关键词 青藏高原 温度 降水量 风速
下载PDF
基于多源数据的青藏高原夏季降水与水汽输送的联系 被引量:31
2
作者 谢欣汝 游庆龙 +1 位作者 保云涛 孟宪红 《高原气象》 CSCD 北大核心 2018年第1期78-92,共15页
利用国家气象信息中心提供的1979-2014年青藏高原(下称高原)地区(26°N-42°N,75°E-105°E)113个站点的逐月降水资料作为基准降水资料,与另外4套格点降水资料(APHRO、CM AP、GPCP、GPCC)和8套再分析的降水资料(NCEP1、... 利用国家气象信息中心提供的1979-2014年青藏高原(下称高原)地区(26°N-42°N,75°E-105°E)113个站点的逐月降水资料作为基准降水资料,与另外4套格点降水资料(APHRO、CM AP、GPCP、GPCC)和8套再分析的降水资料(NCEP1、NCEP2、M ERRA、ERA_Interim、ERA20c、20CRv2、JRA55、CFSR)作对比,可得12套再分析资料中,APHRO能够最好地刻画出高原1979-2007年夏季降水的时空分布形态。GPCP次之,能够较好地刻画其1979-2014年的特征。就气候态而言,水汽主要由南边界输入高原,输入大值区是下层;另外水汽同样从西边界和北边界输入高原,主要的输入层分别是中层和下层;而水汽主要是从东边界中层输出。多套资料比较可知,ERA_Interim和MERRA分别能较好地刻画高原本地和其周围地区夏季水汽输送情况。研究高原东南部降水的年际变化和环流的关系,发现在印度半岛和孟加拉湾处有一异常的纬向反气旋,其北边缘加强的水汽输送导致了高原东南部降水的异常增多。 展开更多
关键词 青藏高原 水汽收支 夏季降水 年际变化 反气旋
下载PDF
1980-2016年青藏高原变暖时空特征及其可能影响原因 被引量:22
3
作者 魏莹 段克勤 《高原气象》 CSCD 北大核心 2020年第3期459-466,共8页
为全面认识1980-2016年期间青藏高原气温的时空变化,利用气象台站地表气温(TO)数据,对比分析了JRA-55(TJ)、ERA-Interim(TE)和MERRA(TM)三种再分析2 m气温资料在高原东部的适用性,并选取最优数据集相关参数进一步探讨高原气温变化的可... 为全面认识1980-2016年期间青藏高原气温的时空变化,利用气象台站地表气温(TO)数据,对比分析了JRA-55(TJ)、ERA-Interim(TE)和MERRA(TM)三种再分析2 m气温资料在高原东部的适用性,并选取最优数据集相关参数进一步探讨高原气温变化的可能机制。结果表明,TO、TJ、TE和TM均能够揭示高原呈现的显著增温趋势,其年平均增温趋势分别为0.52,0.37,0.29和0.26℃·(10a)-1。对比三种再分析资料与TO年、季时空变化发现,TJ在高原的适用性优于TE和TM,可用来弥补高原西部观测的不足。TJ显示高原整体存在“双中心”变暖区,相比于夏季,冬季的变暖中心会发生“南移”,且中心最大变暖趋势[0.9℃·(10a)^-1]大于夏季[0.8℃·(10a)-1]。夏季升温趋势存在南缓北快差异可能与降水潜热变化有关,而中东部冬季变暖显著则可能与积雪-反照率反馈调节地表净辐射收支相关。 展开更多
关键词 青藏高原 温度 JRA-55 降水 积雪
下载PDF
青藏高原未来气候变化的热动力成因分析 被引量:21
4
作者 王玉琦 鲍艳 南素兰 《高原气象》 CSCD 北大核心 2019年第1期29-41,共13页
利用第五次国际耦合模式比较计划(the Fifth Phase of Coupled Model Inter-comparison Project,CM IP5)的8个模式在高浓度排放路径RCP8. 5下的输出资料对青藏高原(下称高原) 21世纪未来气候变化进行预测,基于水汽收支方程对高原局地地... 利用第五次国际耦合模式比较计划(the Fifth Phase of Coupled Model Inter-comparison Project,CM IP5)的8个模式在高浓度排放路径RCP8. 5下的输出资料对青藏高原(下称高原) 21世纪未来气候变化进行预测,基于水汽收支方程对高原局地地表水通量P-E(降水-蒸发)变化进行热动力过程分解,求取平均环流(动力因子Mean Circulation Dynamic,MCD)、水汽辐合项(热动力因子,Thermal Dynamic,TH)等对P-E通量变化的相对贡献率,建立大尺度环流变化和高原局地气候变化的定量关系,探讨高原未来气候变化的热动力成因。研究结果表明:(1)高原未来整体变暖湿,与历史参考时期1986-2005年相比,21世纪末P-E通量增加17. 9%,增湿梯度呈西北-东南向分布,以高原东南部林木分布区增加最显著;(2)在高原湿季(5-9月,也即高原植被生长季)内,因平均环流变化导致的水汽输送变化是高原未来变湿的主要原因,贡献了约53%的P-E通量增加,这与气候变暖后Hadley环流下沉支和中高纬西风环流的极向扩展有关;热动力因子贡献了12%P-E通量的增加,对高原未来的整体变湿贡献相对较小,但在三江源区热动力贡献较大,这与该区未来植被覆盖增加,植被对气候变化的正反馈加强有关。值得注意的是,受CMIP5多模式分辨率粗糙、模拟性能在高原地区差异较大等的影响,分析结果存在一定不确定性,结论比较初步,未来使用分辨率更高、物理过程更完善的模式,结合统计方法提高预测精度可进一步改善研究结果。 展开更多
关键词 青藏高原 气候变化 热动力成因 CMIP5
下载PDF
青藏高原夏季云水含量及其水汽输送年际异常分析 被引量:18
5
作者 刘菊菊 游庆龙 王楠 《高原气象》 CSCD 北大核心 2019年第3期449-459,共11页
利用欧洲中期天气预报中心(ECMWF)提供的1979-2016年ERA-Interim再分析资料分析了青藏高原(下称高原)夏季云水含量及其水汽输送情况。结果表明:高原夏季云水含量占全年48%,东南向西北减少。影响高原云水含量的水汽通道有印度洋通道、南... 利用欧洲中期天气预报中心(ECMWF)提供的1979-2016年ERA-Interim再分析资料分析了青藏高原(下称高原)夏季云水含量及其水汽输送情况。结果表明:高原夏季云水含量占全年48%,东南向西北减少。影响高原云水含量的水汽通道有印度洋通道、南海通道、孟加拉湾北部及伊朗西部通道(依次简称通道1、2、3、4)。高原云水含量和各水汽通道强度均有明显年际变化。云水含量年际变化与通道2,4基本一致。云水含量与各水汽通道强度均呈增加趋势。通道1偏强时,来自印度洋北部和南海的异常水汽在孟加拉湾交汇向高原输送,主要使高原西北部云水含量增多。通道2偏强时,南海、中南半岛的异常偏南通量及孟加拉湾北部的异常西南通量向高原东南部输送更多水汽。通道3偏强时,西风带水汽和来自印度洋水汽更多输送到高原,主要使高原东北部云水含量偏多。通道4偏强时,来自南海-孟加拉湾南部的水汽向高原异常输送,使高原中部、东南部云水含量偏多。此外,西太平洋副热带高压(下称副高)偏西南偏强时,水汽通道2、4强度偏强,有利于水汽向高原输送。 展开更多
关键词 青藏高原 云水含量 水汽输送 水汽通道
下载PDF
基于动力降尺度方法预估的青藏高原降水变化 被引量:15
6
作者 张宏文 高艳红 《高原气象》 CSCD 北大核心 2020年第3期477-485,共9页
当前的全球气候模式分辨率较低,难以合理再现青藏高原降水的时空分布特征,动力降尺度方法成为一种有效的手段。本文利用全球气候模式CCSM4的输出结果驱动区域气候模式WRF进行动力降尺度模拟,评估了动力降尺度对青藏高原湿季总降水率和... 当前的全球气候模式分辨率较低,难以合理再现青藏高原降水的时空分布特征,动力降尺度方法成为一种有效的手段。本文利用全球气候模式CCSM4的输出结果驱动区域气候模式WRF进行动力降尺度模拟,评估了动力降尺度对青藏高原湿季总降水率和对流降水比例的模拟能力,对比了CCSM4和WRF模式预估的青藏高原湿季总降水、层云降水和对流降水变化差异。结果表明,相比于驱动数据,动力降尺度模拟能更好地再现1998-2005年青藏高原湿季总降水率和对流降水比例空间分布及随海拔分布的特征;WRF模式预估的高原未来(2070-2099年)湿季总降水增加,但空间上呈“北增南减”的变化特征,对流降水的增加导致高原北部总降水增加,而层云降水的减少导致高原南部总降水减少。整体而言,对流降水的增加大于层云降水的减少,且主要发生在海拔4000 m以下。 展开更多
关键词 青藏高原 层云降水 对流降水 WRF CCSM
下载PDF
全球变暖背景下青藏高原夏季大气中水汽含量的变化特征 被引量:13
7
作者 常姝婷 刘玉芝 +1 位作者 华珊 贾瑞 《高原气象》 CSCD 北大核心 2019年第2期227-236,共10页
利用中国气象局提供的0. 5°×0. 5°降水和温度的日值资料,联合ERA-Interim、MERRA2(second M odern-Era Retrospective analysis for Research and Applications)和JRA-55(Japanese 55-year Reanalysis)再分析资料以及全... 利用中国气象局提供的0. 5°×0. 5°降水和温度的日值资料,联合ERA-Interim、MERRA2(second M odern-Era Retrospective analysis for Research and Applications)和JRA-55(Japanese 55-year Reanalysis)再分析资料以及全球陆面数据同化系统(Global Land surface Data Asimilation System,GLDAS-2. 0)资料,研究了全球变暖背景下青藏高原夏季地表气温及降水的变化特征,以及该地区大气中水汽含量及水汽输送特征。结果表明,1979—1998年期间,高原的地表气温呈增加趋势,降水呈减少趋势;而在全球增温减缓期间(1999—2010年),地表气温及降水较1979—1998年期间呈现更为显著的增加趋势。在青藏高原上空,大气中水汽含量在1979—2010年间整体呈增加趋势;然而,进一步分析表明,在此期间由外界向高原输送的水汽逐年降低,尤其在1998年后,由于西南季风强度的大幅减弱,使得外界向高原的净水汽输送量减少得更为显著;青藏高原地表蒸散量的分析表明,自1998年后,高原地表的蒸散量显著增加,成为高原地区大气中水汽增加的主要原因。 展开更多
关键词 青藏高原 全球变暖 大气水汽 水汽净输送 下垫面蒸散
下载PDF
多套土壤湿度替代资料在青藏高原的适用性分析 被引量:11
8
作者 王静 祁莉 +2 位作者 吴志伟 施晓晖 何金海 《高原气象》 CSCD 北大核心 2018年第2期371-381,共11页
目前,仍没有一套公认的能够很好的描述高原土壤湿度变化特征的替代资料,为此利用收集到的多套观测资料作为参考,分别对各种替代资料在高原的适用性进行了评估。结果表明:(1)观测资料表明,高原的土壤湿度在表层、中层、深层的变化具有较... 目前,仍没有一套公认的能够很好的描述高原土壤湿度变化特征的替代资料,为此利用收集到的多套观测资料作为参考,分别对各种替代资料在高原的适用性进行了评估。结果表明:(1)观测资料表明,高原的土壤湿度在表层、中层、深层的变化具有较好的一致性,表层与中层、中层与深层的土壤湿度相关系数均在0.8以上。(2)卫星反演资料SSM/I RETRIEVALS在各个站点与观测值的相关系数都为正,在高原东南部、中部、北部相关系数都在0.5以上,且标准差与高原东南和中部的观测标准差较为接近,适用于高原的大范围地区,是研究青藏高原土壤湿度多年变化特征的一套较好的替代资料。(3)春季高原土壤湿度的空间分布具有南部边缘较大、由东南向西北递减的特征,大部分地区的土壤湿度具有明显的线性增加趋势;去除趋势后,高原东、西各有一个均方差大值区,东、西关键区内的土壤湿度从春到夏都具有较好的持续性,可以作为预测我国夏季降水的重要因子。 展开更多
关键词 青藏高原 土壤湿度 资料评估 时空变化特征
下载PDF
2000—2019年青藏高原积雪时空变化 被引量:10
9
作者 叶红 易桂花 +5 位作者 张廷斌 周小兵 李景吉 别小娟 申一林 杨正兰 《资源科学》 CSSCI CSCD 北大核心 2020年第12期2434-2450,共17页
积雪是冰冻圈最重要的组成部分,影响着大气环流和区域水量平衡,对气候变化十分敏感。本文基于2000—2019年MODIS/Terra积雪产品数据,探讨了青藏高原近20年积雪的年内、年际和季节性时空特征及其变化趋势。结果表明:(1)2000—2019年青藏... 积雪是冰冻圈最重要的组成部分,影响着大气环流和区域水量平衡,对气候变化十分敏感。本文基于2000—2019年MODIS/Terra积雪产品数据,探讨了青藏高原近20年积雪的年内、年际和季节性时空特征及其变化趋势。结果表明:(1)2000—2019年青藏高原积雪以短期积雪为主,积雪期在1个月及以下时间段内的积雪空间分布范围最广,占积雪总面积的72.91%;积雪期越长,多年平均积雪率(SCR)越高,SCR呈高原四周山脉高,而羌塘高原、江河源区、柴达木-黄湟高中盆地等地低的特点。(2)2000—2019年积雪面积呈反复的先波动增加再波动减少,距平变化率在-15.97%~11.52%之间。横断山区、帕米尔高原以及羌塘高原大部分地区的SCR呈明显减少趋势;高原四周极大/大起伏高山/极高山区、江河源丘状高山原和江河上游中/大起伏高山区的SCR呈显著增加趋势。(3)年内积雪面积呈双峰型周期变化趋势,3月和11月达到峰值,8月达到谷值,与该区域多年平均气温、降水等气候因子的年内周期性变化相反。青藏高原冬季积雪分布最广,秋季和春季积雪范围次之,夏季积雪范围最小;2000—2019年,青藏高原东部和南部冬季积雪显著增加、秋季和春季积雪显著减少,青藏高原整体夏季积雪显著减少。(4)近20年,青藏高原积雪与气温、降水的相关程度均较强,积雪覆盖范围与气温呈负相关关系,与降水呈正相关关系。研究结果有助于掌握青藏高原冰雪融水变化情况,对区域水量平衡和气候变化有重要指示作用。 展开更多
关键词 积雪 积雪率(SCR) 时空变化 MODIS/Terra MOD10A2 青藏高原
原文传递
基于GLDAS与再分析资料的青藏高原内循环降水率分析 被引量:10
10
作者 续昱 高艳红 《高原气象》 CSCD 北大核心 2020年第3期499-510,共12页
内循环降水率是本地蒸发产生的降水与总降水量的比值,可以表征陆气相互作用的强度。本研究使用准等熵拉格朗日后向轨迹追踪模型(Quasi-isentropic backward trajectory,QIBT),基于全球陆面数据同化产品(Global Land Data Assimilation S... 内循环降水率是本地蒸发产生的降水与总降水量的比值,可以表征陆气相互作用的强度。本研究使用准等熵拉格朗日后向轨迹追踪模型(Quasi-isentropic backward trajectory,QIBT),基于全球陆面数据同化产品(Global Land Data Assimilation Systems,GLDAS)的降水和蒸发数据,以及ERA-Interim再分析资料(ERAI),选取降水量与气候平均态相当的2001年,研究了青藏高原内循环降水率。其次,使用2001年ERAI降水和蒸发数据替换GLDAS数据,分析地表数据不确定性对内循环降水率的影响,最后,选取30年降水和蒸发量的极端情况,探讨了极端干湿年对内循环降水率的影响。结果表明,青藏高原内循环降水率东南部小于西北部,年平均内循环降水率为0.42。极端干年大于2001年,极端湿年小于2001年。使用再分析资料的降水和蒸发数据后,内循环降水率减小为0.28,与再分析资料对青藏高原降水量的高估有关。 展开更多
关键词 青藏高原 内循环降水率 GLDAS ERA-INTERIM 降水量
下载PDF
近30年BCC-CSM(m)模拟高原积雪状况评估及其对夏季降水的影响 被引量:8
11
作者 宋敏红 吴统文 +3 位作者 张宇 张少波 龙银平 李扬 《高原气象》 CSCD 北大核心 2020年第1期15-23,共9页
为了得到适用于青藏高原积雪研究的高分辨率、长时间序列的区域尺度资料,利用近30年逐月区域气候系统模式BCC-CSM(m)模拟的1.125°×1.125°积雪深度资料、卫星遥感反演的0.25°×0.25°积雪深度资料、ERA-Inte... 为了得到适用于青藏高原积雪研究的高分辨率、长时间序列的区域尺度资料,利用近30年逐月区域气候系统模式BCC-CSM(m)模拟的1.125°×1.125°积雪深度资料、卫星遥感反演的0.25°×0.25°积雪深度资料、ERA-Interim 0.75°×0.75°地面感热再分析资料和中国气象数据网提供的0.5°×0.5°降水资料,评估了BCC-CSM(m)模式对高原积雪深度时空演变的模拟性能及其对高原感热和我国夏季降水的影响,为夏季降水预测提供参考依据。结果表明,BCC-CSM(m)模式能够较好再现冬季高原积雪的时空变化特征,在缺少有效实测积雪资料的高原地区不失为一种分辨率高、时间序列长的代用资料。冬季高原积雪和春季地表感热之间存在反相变化,而且两者的空间分布型存在显著的负相关关系。冬季高原积雪与我国夏季降水存在一定的相关关系,即:与长江中下游地区、四川地区、新疆北部地区、东北东部和高原南部夏季降水呈显著正相关关系,而与华南和东北北部地区呈显著负相关关系。冬季高原积雪存在全区多雪型、全区少雪型、东南少西北多型和东南多西北少型4种空间分布模态,而且不同高原积雪模态对我国夏季降水的影响不同。 展开更多
关键词 青藏高原 BCC-CSM(m)模式 积雪深度 夏季降水 时空演变
下载PDF
多年冻土对青藏高原草地生态承载力的贡献研究 被引量:6
12
作者 方一平 朱付彪 +2 位作者 宜树华 邱孝枰 丁永建 《气候变化研究进展》 CSCD 北大核心 2019年第2期150-157,共8页
草地生态系统是一个复杂的社会、经济、生态系统,多年冻土作为高寒草地生态系统结构和功能维系的重要因素,是客观刻画高寒草地生态承载力不容忽视的重要方面。文中采用结构动力学方法,从草地质量、草地干预、草地潜力、草地压力4个维度... 草地生态系统是一个复杂的社会、经济、生态系统,多年冻土作为高寒草地生态系统结构和功能维系的重要因素,是客观刻画高寒草地生态承载力不容忽视的重要方面。文中采用结构动力学方法,从草地质量、草地干预、草地潜力、草地压力4个维度建立高寒草地生态承载力结构动力学模型,分析青藏高原多年冻土区草地生态承载力的变化以及主要结构要素,量化多年冻土变化对青藏高原高寒草地生态承载力的贡献率,结果表明:(1)多年冻土区草地生态承载力呈增加趋势,尤其是1998年以后上升显著,这主要归因于草地生长季节降水增加、气温升高、净初级生产力增幅驱动以及生态保护工程建设的共同作用。(2)多年冻土活动层厚度变化与草地生态承载力呈负相关,多年冻土活动层厚度对草地生态承载力的贡献率约为10%,即多年冻土活动层厚度每增加1个单位,将导致草地生态承载力下降0.1个单位。由于青藏高原空间差异显著,加之气候变化的不确定性,这一贡献水平只是一个粗略的参照值。 展开更多
关键词 草地生态承载力 多年冻土 多年冻土活动层厚度 结构动力学 青藏高原
下载PDF
一个新的青藏高原热力指数的构建及其应用 被引量:6
13
作者 贲海荣 周顺武 +2 位作者 乔钰 单幸 李强 《高原气象》 CSCD 北大核心 2017年第6期1487-1498,共12页
利用1979-2014年ERA-Interim再分析月平均温度资料,分析了对流层中上层(500~150 h Pa)温度纬向偏差的分布特征,并将青藏高原(下称高原)对流层中上层温度纬向偏差进行垂直积分后,尝试构建一个新的表征高原热力指数(Plateau Heating Index... 利用1979-2014年ERA-Interim再分析月平均温度资料,分析了对流层中上层(500~150 h Pa)温度纬向偏差的分布特征,并将青藏高原(下称高原)对流层中上层温度纬向偏差进行垂直积分后,尝试构建一个新的表征高原热力指数(Plateau Heating Index,PHI),并分析该指数的季节演变特征及其与东亚大气环流的关系。结果表明:(1)对流层中上层纬向温度偏差的暖中心存在着季节性的移动,即春季暖中心由西太平洋迅速移至高原,而秋季则快速东移到西太平洋;(2)PHI在年进程上呈现出明显的单峰型变化特征,在11月至翌年2月为负值,其余为正值;(3)各季PHI与纬向西风的显著相关区大致以30°N为界,呈现出北正南负的反向分布。当PHI增强时,高原北(南)部西风增强(减弱),副热带西风急流增强,反之亦然;(4)各季PHI与200 h Pa位势高度的显著正相关均出现高原上空,表明高原对流层加热有利于其上空位势高度的增加。当夏季PHI偏强(弱)时,对应着南亚高压偏强(弱)。 展开更多
关键词 青藏高原 对流层中上层 温度纬向偏差 热力指数 副热带西风急流 南亚高压
下载PDF
Responses of Alpine Wetlands to Climate Changes on the Qinghai-Tibetan Plateau Based on Remote Sensing 被引量:3
14
作者 WANG Rui HE Min NIU Zhenguo 《Chinese Geographical Science》 SCIE CSCD 2020年第2期189-201,共13页
The alpine wetlands in QTP(Qinghai-Tibetan Plateau)have been profoundly impacted along with global climate changes.We employ satellite datasets and climate data to explore the relationships between alpine wetlands and... The alpine wetlands in QTP(Qinghai-Tibetan Plateau)have been profoundly impacted along with global climate changes.We employ satellite datasets and climate data to explore the relationships between alpine wetlands and climate changes based on remote sensing data.Results show that:1)the wetland NDVI(Normalized Difference Vegetation Index)and GPP(Gross Primary Production)were more sensitive to air temperature than to precipitation rate.The wetland ET(evapotranspiration)across alpine wetlands was greatly correlated with precipitation rate.2)Alpine wetlands responses to climate changes varied spatially and temporally due to different geographic environments,variety of wetland formation and human disturbances.3)The vegetation responses of the Zoige wetland was the most noticeable and related to the temperature,while the GPP and NDVI of the Qiangtang Plateau and Gyaring-Ngoring Lake were significantly correlated with both temperature and precipitation.4)ET in the Zoige wetland showed a significantly positive trend,while ET in Maidika wetland and the Qiangtang plateau showed a negative trend,implying wetland degradation in those two wetland regions.The complexities of the impacts of climate changes on alpine wetlands indicate the necessity of further study to understand and conserve alpine wetland ecosystems. 展开更多
关键词 qinghai-tibetan plateau(qtp) ALPINE WETLANDS climate change Moderate-resolution Imaging Spectroradiometer(MODIS) remote sensing
下载PDF
Luminescence Chronology and Radiocarbon Reservoir Age Determination of Lacustrine Sediments from the Heihai Lake,NE Qinghai-Tibetan Plateau and Its Paleoclimate Implications 被引量:2
15
作者 Fuyuan An Zhongping Lai +4 位作者 Xiangjun Liu Yixuan Wang Qiufang Chang Baoliang Lu Xiaoyun Yang 《Journal of Earth Science》 SCIE CAS CSCD 2018年第3期695-706,共12页
The accurately determining the lake ^14C reservoir age has a crucial significance for climatic reconstruction. In this study, the optically stimulated luminescence (OSL) dating method is employed to date samples fro... The accurately determining the lake ^14C reservoir age has a crucial significance for climatic reconstruction. In this study, the optically stimulated luminescence (OSL) dating method is employed to date samples from highstand lacustrine sediments, palaeoshoreline, fluvial terrace, and the alluvial fan of the Heihai Lake catchment. Accelerator mass spectrometry (AMS) 14C dating was also used to date fossil plants from highstand lacustrine sediments. Based on the calculations of linear regression with OSL against radiocarbon ages for same layers of two sections, the quantitative ^14C reservoir ages were estimated to lie between 3 353 and 3 464 yr during the 1.8 to 2.4 ka, which showed temporal variation. The sources of old carbon are the dissolution of carbonate bedrocks distributed along the Kunlun Mountain. The OSL ages of the different members of the hydatogen sedimentary system at Heihai Lake catchment indicate that a stronger hydrologic condition occurred from 3.0±0.2 to 1.8±0.2 ka, with a maximum lake level of 9 m higher than present. This humid stage was widely recorded in different sediments on the QTP and Chinese Loess Plateau (CLP), indicating its broad synchronicity across the Asian Summer Monsoon region. The enhanced East Asian Summer Monsoon (EASM) and the Indian Summer Monsoon (ISM) resulted in the increase of moisture availability for the Heihai Lake area during this stage. 展开更多
关键词 luminescence and radiocarbon dating 14C reservoir age Heihai Lake qinghai-tibetan plateauqtp palaeoclimate implications.
原文传递
A 94-ka Pollen Record of Vegetation Change in Qaidam Basin,Northeastern Qinghai-Tibetan Plateau 被引量:1
16
作者 WEI Haicheng FAN Qishun +3 位作者 ZHAO Yan MA Haizhou AN Fuyuan' YUAN Qin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期31-33,共3页
1 Introduction The northeastern Qinghai-Tibetan Plateau(NE QTP),located at a triple junction of influences of the Asian summer monsoon,westerly jet stream and Siberian high,is of considerable significance with regard ... 1 Introduction The northeastern Qinghai-Tibetan Plateau(NE QTP),located at a triple junction of influences of the Asian summer monsoon,westerly jet stream and Siberian high,is of considerable significance with regard to regional responses to global climate change.Qarhan Salt Lake is the largest playa located in the central eastern 展开更多
关键词 Pollen record Climate change Qaidam Basin Late Pleistocene qinghai-tibetan plateau(qtp)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部