期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于长短时记忆神经网络的Multi-GNSS卫星钟差建模预报 被引量:1
1
作者 蒋春华 朱美珍 +1 位作者 薛慧杰 刘广盛 《大地测量与地球动力学》 CSCD 北大核心 2024年第3期257-262,共6页
针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利... 针对卫星钟差预报中二次多项式模型存在易受噪声干扰、预报精度不高的问题,构建一种基于长短时记忆神经网络的multi-GNSS卫星钟差预报模型,并分析不同卫星系统、不同钟类型基于不同建模方案的模型精度。为验证该模型的有效性和可行性,利用LSTM模型、QP模型、QP-LSTM模型分别基于12 h和24 h钟差序列进行建模,预报1 h、3 h、6 h、12 h钟差。结果表明,LSTM模型建模24 h、预报1 h精度最高。multi-GNSS卫星钟差LSTM预报模型中Galileo系统精度最高,其次为BDS-2系统和GPS系统,GLONASS系统精度最低,精度分别为0.018 ns、0.069 ns、0.133 ns、0.242 ns。不同原子钟预报精度不同,氢原子钟预报精度优于铷原子钟、铯原子钟。LSTM神经网络模型预报精度相较于QP-LSTM模型提升27%,相较于QP模型提升36%。 展开更多
关键词 长短时记忆神经网络(lstm) 二次多项式模型 qp-lstm模型 multi-GNSS卫星钟差预报
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部