It is proved that a left QF-2 ring R is QF if R is either an artinian strongly right bounded ring, or a finite strongly left bounded and left Kasch ring with Soc(RR) = Soc( RR).
Let A be a QF-3 standardly stratified algebra and f be a Schur functor corresponding to some projective-injective faithful A-module, denoted by Ae. The main result of this paper is to prove that, if the dominant dimen...Let A be a QF-3 standardly stratified algebra and f be a Schur functor corresponding to some projective-injective faithful A-module, denoted by Ae. The main result of this paper is to prove that, if the dominant dimension of A is sufficiently large, then ] induces a full embedding from £(△) to eAe-mod which preserves Ext-groups up to certain degrees, where £(△) denotes the full subcategory of A-mod whose objects are filtered by standard A-modules. We check this criterion on some typical examples, quantized Schur algebras Sq(n,r) with n≥r and finite-dimensional algebras associated with the Bernstein-Gelfand-Gelfand category O of semisimple complex Lie algebras.展开更多
文摘It is proved that a left QF-2 ring R is QF if R is either an artinian strongly right bounded ring, or a finite strongly left bounded and left Kasch ring with Soc(RR) = Soc( RR).
基金the AsiaLink Grant ASI/B7-301/98/679-11the National Natural Foundation of China (Grant No.10501041 and 10301033)
文摘Let A be a QF-3 standardly stratified algebra and f be a Schur functor corresponding to some projective-injective faithful A-module, denoted by Ae. The main result of this paper is to prove that, if the dominant dimension of A is sufficiently large, then ] induces a full embedding from £(△) to eAe-mod which preserves Ext-groups up to certain degrees, where £(△) denotes the full subcategory of A-mod whose objects are filtered by standard A-modules. We check this criterion on some typical examples, quantized Schur algebras Sq(n,r) with n≥r and finite-dimensional algebras associated with the Bernstein-Gelfand-Gelfand category O of semisimple complex Lie algebras.