A double-well potential model is proposed for the pionic deuterium that enables to calculate the energy split, the potential barrier height and estimate the pion tetrahedron edge length. We propose that pion tetrahedr...A double-well potential model is proposed for the pionic deuterium that enables to calculate the energy split, the potential barrier height and estimate the pion tetrahedron edge length. We propose that pion tetrahedrons, π<sup>Td</sup> = u<sub>d</sub>~</sup>dũ, play a central role in the Yukawa interaction by enabling quark exchange reactions between protons and neutrons by tunneling through a potential barrier. A vacuum polarization Feynman diagram is proposed for the π<sup>Td</sup> having chains of fermion loops for the two valence quarks and anti-quarks connected by gluons. With a higher order vacuum polarization diagram, the d and u quark loops are interleaved and the chiral symmetry is broken dynamically. The proposed π<sup>Td</sup> vacuum polarization integral does not diverge in both the IR and UV limits and vanishes in the limit of an infinite pion tetrahedron condensate. We propose a new Delbruck scattering Feynman diagram that includes d and u quark and anti-quark interleaved loops. We further propose that conversion of gravitons to photons may occur via quark and anti-quark loops that describe the pion tetrahedrons dynamics in the vacuum and may also transfer gravitational waves.展开更多
We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>dũintroduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition ...We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>dũintroduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition from the neutral pion superposition of two free mesons, d<sub>d</sub>~</sup> and uũ, to the tetrahedron geometry with optional two chiral states may be the symmetry breaking of the QCD ground state. The u<sub>d</sub>~</sup>dũtetrahedron mass may be calculated by measuring the β decay rate variability. We assume that electrons and positrons are composite particle exotic tetraquarks, dũd<sub>d</sub>~</sup> for the electrons and u<sub>d</sub>~</sup>d<sub>d</sub>~</sup> for the positrons and confined by the strong force. We propose that the QCD tetrahedrons play a central role in electron pairing mechanism in both chemical bond forming and superconductor Cooper pairs. We propose a hypothesis where the QCD ground state tetrahedrons play a central role in low energy physics where quark exchange reactions between particles and the QCD tetrahedrons via gluon junctions transfer all the forces. The QCD ground state u<sub>d</sub>~</sup>dũtetrahedrons hypothesis provides a symmetry breaking and a mass gap may be created by the ground state QCD tetrahedrons Bose-Einstein condensate.展开更多
It is shown that SU(2) QCD admits an dual Abelian-Higgs phase, with a Higgs vacuum of a type-Ⅱ superconductor. This is done by using a connection decomposition for the gluon field and the random-direction approxima...It is shown that SU(2) QCD admits an dual Abelian-Higgs phase, with a Higgs vacuum of a type-Ⅱ superconductor. This is done by using a connection decomposition for the gluon field and the random-direction approximation. Using a bag picture with soft wall, we presented a calculational procedure for the glueball energy based on the recent proof for wall-vortices [Nucl. Phys. B 741(2006)1].展开更多
It is shown on general ground that there exist two qualitatively distinct solutions of the Dyson-Schwinger equation for the quark propagator in the case of non-zero current quark mass. One solution corresponds to the ...It is shown on general ground that there exist two qualitatively distinct solutions of the Dyson-Schwinger equation for the quark propagator in the case of non-zero current quark mass. One solution corresponds to the “Nambu- Goldstone” phase and the other one corresponds to the “Wigner” phase in the chiral limit.展开更多
We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevat...We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.展开更多
The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a no...The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.展开更多
We study the properties of QCD vacuum state in this paper. The values of various local quark vacuum condensates, quark-gluon mixed vacuum condensates, and the structure of non-local quark vacuum condensate are predict...We study the properties of QCD vacuum state in this paper. The values of various local quark vacuum condensates, quark-gluon mixed vacuum condensates, and the structure of non-local quark vacuum condensate are predicted by the solution of Dyson-Schwinger Equations in "rainbow" approximation with three sets of different parameters for effective gluon propagator. The light quark virtuality is also obtained in a consistent way. Our all theoretical results here are in good agreement with the empirical values used widely in literature and many other theoretical calculations.展开更多
文摘A double-well potential model is proposed for the pionic deuterium that enables to calculate the energy split, the potential barrier height and estimate the pion tetrahedron edge length. We propose that pion tetrahedrons, π<sup>Td</sup> = u<sub>d</sub>~</sup>dũ, play a central role in the Yukawa interaction by enabling quark exchange reactions between protons and neutrons by tunneling through a potential barrier. A vacuum polarization Feynman diagram is proposed for the π<sup>Td</sup> having chains of fermion loops for the two valence quarks and anti-quarks connected by gluons. With a higher order vacuum polarization diagram, the d and u quark loops are interleaved and the chiral symmetry is broken dynamically. The proposed π<sup>Td</sup> vacuum polarization integral does not diverge in both the IR and UV limits and vanishes in the limit of an infinite pion tetrahedron condensate. We propose a new Delbruck scattering Feynman diagram that includes d and u quark and anti-quark interleaved loops. We further propose that conversion of gravitons to photons may occur via quark and anti-quark loops that describe the pion tetrahedrons dynamics in the vacuum and may also transfer gravitational waves.
文摘We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>dũintroduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition from the neutral pion superposition of two free mesons, d<sub>d</sub>~</sup> and uũ, to the tetrahedron geometry with optional two chiral states may be the symmetry breaking of the QCD ground state. The u<sub>d</sub>~</sup>dũtetrahedron mass may be calculated by measuring the β decay rate variability. We assume that electrons and positrons are composite particle exotic tetraquarks, dũd<sub>d</sub>~</sup> for the electrons and u<sub>d</sub>~</sup>d<sub>d</sub>~</sup> for the positrons and confined by the strong force. We propose that the QCD tetrahedrons play a central role in electron pairing mechanism in both chemical bond forming and superconductor Cooper pairs. We propose a hypothesis where the QCD ground state tetrahedrons play a central role in low energy physics where quark exchange reactions between particles and the QCD tetrahedrons via gluon junctions transfer all the forces. The QCD ground state u<sub>d</sub>~</sup>dũtetrahedrons hypothesis provides a symmetry breaking and a mass gap may be created by the ground state QCD tetrahedrons Bose-Einstein condensate.
基金Supported by National Natural Science Foundation of China(10547009)Research Backbone Fostering Program of Knowledge and S&T Innovation Project of NWNU(KJCXGC 03-41)
文摘It is shown that SU(2) QCD admits an dual Abelian-Higgs phase, with a Higgs vacuum of a type-Ⅱ superconductor. This is done by using a connection decomposition for the gluon field and the random-direction approximation. Using a bag picture with soft wall, we presented a calculational procedure for the glueball energy based on the recent proof for wall-vortices [Nucl. Phys. B 741(2006)1].
基金Supported in part by the National Natural Science Foundation of China under Grant Nos 10175033, 10135030, and 10575050, and the Research Fund for the Doctoral Program of Higher Education under Grant No 20030284009.
文摘It is shown on general ground that there exist two qualitatively distinct solutions of the Dyson-Schwinger equation for the quark propagator in the case of non-zero current quark mass. One solution corresponds to the “Nambu- Goldstone” phase and the other one corresponds to the “Wigner” phase in the chiral limit.
文摘We propose that the QCD vacuum pion tetrahedron condensate density vary in space and drops to extremely low values in the Kennan, Barger and Cowie (KBC) void in analogy to earth’s atmospheric density drop with elevation from earth. We propose a formula for the gravitation acceleration based on the non-uniform pion tetrahedron condensate. Gravity may be due to the underlying microscopic attraction between quarks and antiquarks, which are part of the vacuum pion tetrahedron condensate. We propose an electron tetrahedron model, where electrons are comprised of tetraquark tetrahedrons, and . The quarks determine the negative electron charge and the or quarks determine the electron two spin states. The electron tetrahedron may perform a high frequency quark exchange reactions with the pion tetrahedron condensate by tunneling through the condensation gap creating a delocalized electron cloud with a fixed spin. The pion tetrahedron may act as a QCD glue bonding electron pairs in atoms and molecules and protons to neutrons in the nuclei. Conservation of valence quarks and antiquarks is proposed.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10647002 and 10565001) the Guangxi Science Foundation (Grant Nos. 0841030, 0542042 and 0575020)
文摘The non-local vacuum condensates of quantum chromodynamics (QCD) describe the distributions of quarks and gluons in the non-perturbative QCD vacuum state. Physically, this means that vacuum quarks and gluons have a nonzero mean-squared momentum in the vacuum, called virtuality. The quark virtuality is given by the ratio of the local quark-gluon mixed vacuum condensate to the quark local vacuum condensate. The gluon virtuality is expressed by gluon vacuum condensates and four-quark vacuum condensates. We study the two virtualities by solving Dyson-Schwinger Equations and calculating quark and gluon vacuum condensates. Our theoretical results for quark virtuality are in good agreement with many other theoretical model predictions such as QCD sum rules and lattice QCD calculations. Our calculation on gluon virtuality is initial and the results are quite interesting.
基金Supported by National Natural Science Foundation of China(10647002,10565001)Natural Science Foundation of Guangxi(0575020,0542042,0481030)
文摘We study the properties of QCD vacuum state in this paper. The values of various local quark vacuum condensates, quark-gluon mixed vacuum condensates, and the structure of non-local quark vacuum condensate are predicted by the solution of Dyson-Schwinger Equations in "rainbow" approximation with three sets of different parameters for effective gluon propagator. The light quark virtuality is also obtained in a consistent way. Our all theoretical results here are in good agreement with the empirical values used widely in literature and many other theoretical calculations.