The BiFeO_(3)/g-C_(3)N_(4) heterostructure,which is fabricated via a simple mixing–calcining method,benefits the significant enhancement of the pyrocatalytic performance.With the growth of g-C_(3)N_(4) content in the...The BiFeO_(3)/g-C_(3)N_(4) heterostructure,which is fabricated via a simple mixing–calcining method,benefits the significant enhancement of the pyrocatalytic performance.With the growth of g-C_(3)N_(4) content in the heterostructure pyrocatalysts from 0 to 25%,the decomposition ratio of Rhodamine B(RhB)dye after 18 cold-hot temperature fluctuation(25-65℃)cycles increases at first and then decreases,reaching a maximum value of~94.2%at 10%while that of the pure BiFeO_(3) is~67.7%.The enhanced dye decomposition may be due to the generation of the internal electric field which strengthens the separation of the positive and negative carriers and further accelerates their migrations.The intermediate products in the pyrocatalytic reaction also have been detected and confirmed,which proves the key role of the pyroelectric effect in realizing the dye decomposition using BiFeO_(3)/g-C_(3)N_(4) heterostructure catalyst.The pyroelectric BiFeO_(3)/g-C_(3)N_(4) heterostructure shows the potential application in pyrocatalytically degrading dye wastewater.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51872264 and 51778391)Shaanxi Provincial National Science Foundation of China(No.2020JM-579)+1 种基金Key Research and Development Program of Shaanxi Province,China(No.2020GXLH-Z-032)the Basic Public Welfare Research Program of Zhejiang Province,China(No.LGG18E020005)。
文摘The BiFeO_(3)/g-C_(3)N_(4) heterostructure,which is fabricated via a simple mixing–calcining method,benefits the significant enhancement of the pyrocatalytic performance.With the growth of g-C_(3)N_(4) content in the heterostructure pyrocatalysts from 0 to 25%,the decomposition ratio of Rhodamine B(RhB)dye after 18 cold-hot temperature fluctuation(25-65℃)cycles increases at first and then decreases,reaching a maximum value of~94.2%at 10%while that of the pure BiFeO_(3) is~67.7%.The enhanced dye decomposition may be due to the generation of the internal electric field which strengthens the separation of the positive and negative carriers and further accelerates their migrations.The intermediate products in the pyrocatalytic reaction also have been detected and confirmed,which proves the key role of the pyroelectric effect in realizing the dye decomposition using BiFeO_(3)/g-C_(3)N_(4) heterostructure catalyst.The pyroelectric BiFeO_(3)/g-C_(3)N_(4) heterostructure shows the potential application in pyrocatalytically degrading dye wastewater.