An efficient approach has been developed for the synthesis of naturally occurring prenylated chalcones viz. kanzonol C (1), stipulin (2), crotaorixin (3), medicagenin (4), licoagrochalcone A (5) and abyssino...An efficient approach has been developed for the synthesis of naturally occurring prenylated chalcones viz. kanzonol C (1), stipulin (2), crotaorixin (3), medicagenin (4), licoagrochalcone A (5) and abyssinone D (6) along with the pyranochalcones paratocarpin C (7), anthyllisone (8) and 3-O-methylabyssinone A (9). The key step of the synthesis is a Claisen-Schmidt condensation. Subsequently, their anti-inflammatory effects were investigated in lipopolysaccharides (LPSs)-induced RAW-264.7 macrophages. Of the synthesized chalcones, compounds 5 (IC50= 10.41 μmol[L), 6 (IC50= 9.65 μmol/L) and 8 (IC50= 15.34 μmol/L) show remarkable activity with no cytotoxicity. Compound 9 (IC50 = 4.5 μmol/L) exhibits maximum (83.6%) nitric oxide (NO) inhibition, but shows slight cytotoxicity. The results reveal that the chalcones bearing the prenyl group at 3- and/or 5-position on ring A (acetophenone moiety), i.e., 1-4 and 7 show weak, or no inhibition activity, whereas chalcones having the prenyl group only on ring B (aldehyde part), i.e., 5, 6 and 8 show significant activity on the production of inflammatory mediated NO with no cytotoxicity.展开更多
基金financially supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. NRF-2009-0094071), South Korea
文摘An efficient approach has been developed for the synthesis of naturally occurring prenylated chalcones viz. kanzonol C (1), stipulin (2), crotaorixin (3), medicagenin (4), licoagrochalcone A (5) and abyssinone D (6) along with the pyranochalcones paratocarpin C (7), anthyllisone (8) and 3-O-methylabyssinone A (9). The key step of the synthesis is a Claisen-Schmidt condensation. Subsequently, their anti-inflammatory effects were investigated in lipopolysaccharides (LPSs)-induced RAW-264.7 macrophages. Of the synthesized chalcones, compounds 5 (IC50= 10.41 μmol[L), 6 (IC50= 9.65 μmol/L) and 8 (IC50= 15.34 μmol/L) show remarkable activity with no cytotoxicity. Compound 9 (IC50 = 4.5 μmol/L) exhibits maximum (83.6%) nitric oxide (NO) inhibition, but shows slight cytotoxicity. The results reveal that the chalcones bearing the prenyl group at 3- and/or 5-position on ring A (acetophenone moiety), i.e., 1-4 and 7 show weak, or no inhibition activity, whereas chalcones having the prenyl group only on ring B (aldehyde part), i.e., 5, 6 and 8 show significant activity on the production of inflammatory mediated NO with no cytotoxicity.