Pure organic room temperature phosphorescence(RTP) has been attracting a lot interest recently. So far,many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem ...Pure organic room temperature phosphorescence(RTP) has been attracting a lot interest recently. So far,many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem crossing(ISC) and suppressing non-radiative transitions. In supramolecular chemistry, the control and regulation of molecular recognition based on the role of the host and guest in supramolecular polymers matrix, has attracted much attention. Recently, researchers have successfully achieved room temperature phosphorescence of pure organic complexes through host-guest interactions. The host molecule specifically includes the phosphorescent guest to reduce non-radiative transitions and enhance room temperature phosphorescence emission. This review aims to describe the developments and achievements of pure organic room temperature phosphorescence systems through the mechanism of host-guest interactions in recent years, and demonstrates the exploration and pursuit of phosphorescent materials of researchers in different fields.展开更多
Pure organic luminogens with room temperature phosphorescence(RTP) have drawn much attention due to their fundamental importance and promising applications in optoelectronic devices, bioimaging, sensing, etc. Fluoresc...Pure organic luminogens with room temperature phosphorescence(RTP) have drawn much attention due to their fundamental importance and promising applications in optoelectronic devices, bioimaging, sensing, etc. Fluorescence-phosphorescence dual emission at room temperature, however, is rarely observed in pure organic materials. Herein, we reported a metal-and heavy-atom free pure organic luminogen with tert-butyl groups, DtBuCZBP, which is ready to form organogels in dimethylsulfoxide(DMSO).It emits prompt and delayed fluorescence, as well as RTP, namely dual emission in as-prepared solid, gels and polymeric films.To the best of our knowledge, it is the first example of metal-and heavy-atom free pure organic gelator with RTP emission. Such unique RTP and moreover dual emission properties in different states make DtBuCZBP a potential material for diverse applications.展开更多
基金financial support from the National Natural Science Foundation of China (NSFC) (Nos. 21788102, 21722603 and 21871083)Project supported by Shanghai Municipal Science and Technology Major Project (No. 2018SHZDZX03)+2 种基金the Innovation Program of Shanghai Municipal Education Commission (No. 2017-01-07-00-02-E00010)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials (No. KF1803)Donghua University and the Fundamental Research Funds (No. KF1803) for the Central Universities
文摘Pure organic room temperature phosphorescence(RTP) has been attracting a lot interest recently. So far,many strategies have succeeded in achieving efficient organic RTP materials by increasing the rate of intersystem crossing(ISC) and suppressing non-radiative transitions. In supramolecular chemistry, the control and regulation of molecular recognition based on the role of the host and guest in supramolecular polymers matrix, has attracted much attention. Recently, researchers have successfully achieved room temperature phosphorescence of pure organic complexes through host-guest interactions. The host molecule specifically includes the phosphorescent guest to reduce non-radiative transitions and enhance room temperature phosphorescence emission. This review aims to describe the developments and achievements of pure organic room temperature phosphorescence systems through the mechanism of host-guest interactions in recent years, and demonstrates the exploration and pursuit of phosphorescent materials of researchers in different fields.
基金supported by the National Natural Science Foundation of China (51473092)the Shanghai Rising-Star Program (15QA1402500)
文摘Pure organic luminogens with room temperature phosphorescence(RTP) have drawn much attention due to their fundamental importance and promising applications in optoelectronic devices, bioimaging, sensing, etc. Fluorescence-phosphorescence dual emission at room temperature, however, is rarely observed in pure organic materials. Herein, we reported a metal-and heavy-atom free pure organic luminogen with tert-butyl groups, DtBuCZBP, which is ready to form organogels in dimethylsulfoxide(DMSO).It emits prompt and delayed fluorescence, as well as RTP, namely dual emission in as-prepared solid, gels and polymeric films.To the best of our knowledge, it is the first example of metal-and heavy-atom free pure organic gelator with RTP emission. Such unique RTP and moreover dual emission properties in different states make DtBuCZBP a potential material for diverse applications.