Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for...Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.展开更多
文摘Since the poor performance of orthogonal binary Pulse Position Modulation (PPM) compared with binary Pulse Amplitude Modulation (PAM), this paper presents a new modulation scheme named Pulse Width Modulation (PWM) for Impulse Radio Ultra-WideBand (IR-UWB) communication systems. This modulation scheme uses pulses with equal amplitude and different widths to carry different information. The receiver employs differences between similarity coefficients among these pulses to distinguish different information. Both theoretical analysis and simulation results verify that this novel scheme has a Signal to Noise Ratio (SNR) gain of about 1.75 dB compared with or- thogonal binary PPM, and has an SNR loss of about 1.4 dB compared with binary PAM. Although both the theoretical analysis and simulations are based on time-hopping multiple access, this modulation scheme can also be applied to other accessing techniques of UWB communication systems.
文摘采用基于软判决和硬判决的方法,对跳时脉冲位置调制(time hopping-pulse position modulation,TH-PPM)和跳时脉冲幅度调制(time hopping-pulse amplitude modulation,TH-PAM)超宽带系统的误比特率性能进行了分析和比较.在加性高斯白噪声(additive white Gausses noise,AWGN)信道下,研究了TH-PPM和TH-PAM超宽带单用户系统接收端信号进行软判决和硬判决时的性能,同时分析比较系统在两种调制方式下采用不同脉冲重复次数时的性能差异.仿真结果表明,在AWGN信道下,TH-PPM和TH-PAM的系统性能均随脉冲重复次数的增加而明显改善,并且后者优于前者.此外,采用软判决时的系统性能优于采用硬判决时的系统性能.