It is still a lack of bifunctional catalysts for ammonia oxidation reaction(AOR)and hydrogen evolution reaction(HER)due to their different reaction mechanisms.In this work,P is doped into PtZn alloy by calcination wit...It is still a lack of bifunctional catalysts for ammonia oxidation reaction(AOR)and hydrogen evolution reaction(HER)due to their different reaction mechanisms.In this work,P is doped into PtZn alloy by calcination with NaH_(2)PO_(2) as P source to induce the lattice tensile strain of Pt and the electronic interaction between P and Zn,which optimizes the AOR and HER activity simultaneously.The sample with the optimal P content can drive the AOR peak current density of 293.6 mA·mgPt^(-1),which is almost 2.7 times of Pt.For HER,the overpotential at^(-1)0 mA·cm^(-2) is only 23 mV with Tafel slope of 34.1 mV·dec^(-1).Furthermore,only 0.59 V is needed to obtain 50 mA·mgPt^(-1) for ammonia electrolysis under a two-electrode system.Therefore,this work shows an ingenious method to design bifunctional catalysts for ammonia electrolysis.展开更多
The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.Howev...The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.However,such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores,in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support.Here we develop a facile electrospinning strategy to in-situ prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers.Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential(E_(1/2))of 0.911 V versus reversible hydrogen electrode(vs.RHE)and enhanced durability with only decreasing 11 mV after 30,000 potential cycles,compared to a more significant drop of 24 mV in E_(1/2)of Pt/C catalysts(after 10,000 potential cycling).Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support,inhibiting the migration and aggregation of NPs during the ORR.展开更多
Electrochemical ozone production(EOP) via water electrolysis represents an attractive method for the generation of high-purity O3. Herein, the X-PtZn/Zn-N-C electrocatalysts show a strong structural sensitive behavior...Electrochemical ozone production(EOP) via water electrolysis represents an attractive method for the generation of high-purity O3. Herein, the X-PtZn/Zn-N-C electrocatalysts show a strong structural sensitive behavior depends on the size of the PtZn nanoparticles and their EOP activity exhibits a volcano-type dependence for the O3 performance in neutral media. The 7.7-PtZn/Zn-N-C exhibits EOP current efficiency of 4.2%, and shows the prominent performance in the production of gaseous O3 with a value of 1647 ppb at 30 min, which is almost 4-fold compared to 2.2-Pt Zn/Zn-N-C. Based on the experiments and theoretical calculations, the performance of the EOP process was determined by the nanoparticle size-effect and the synergistic effect between the PtZn nanoparticles and atomically dispersed Zn-N-C. Furthermore, the fivemembered cyclic structure of O3 can be stabilized between the PtZn nanoparticle and the Zn-N-C support,indicating that O3 is produced at the interface.展开更多
Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction react...Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction reaction(ORR),in which a Zn-rich metal–organic framework(MOF)is used as an in situ generated support to confine the growth of PtZn particles.Despite requiring high-temperature treatment,the intermetallic L1_(0)-PtZn particles exhibit a small mean size of3.95 nm,which confers the catalysts with high electrochemical active surface area(81.9 m^(2)g_(Pt)^(-1))and atomic utilization.The Pt electron structure and binding strength between Pt and oxygen intermediates are optimized through ligand effect and compressive strain.These advantages result in ORR mass activity and specific activity of 0.926 A mg_(Pt)^(-1) and 1.13 mA cm^(-2),respectively,which are 5.4 and 4.0 times those of commercial Pt/C.The stable L10structure provides the catalysts with superb durability;only a halfwave potential loss of 11 mV is observed after 30,000 cycles of accelerated stress tests,through which the structure evolves into a more stable PtZn-Pt core-shell structure.Therefore,the development of a Zn-based MOF as a catalyst support is demonstrated,providing a synergy strategy to prepare highly dispersed intermetallic alloys with high activity and durability.展开更多
Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts...Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts used in this reaction often suffer from rapid deactivation due to serious coke deposition and metal sintering. Herein, we reported the effects of Zn modification on the stability of Pt/Al2 O3 for EDH.The Zn-modified sample(PtZn2/Al2 O3) exhibits stable ethane conversion(20%) with over 95% ethylene selectivity. More importantly, it exhibits a significantly low deactivation rate of only 0.003 h-1 at 600 °C for70 h, which surpasses most of previously reported catalysts. Detailed characterizations including in situ FT-IR, ethylene adsorption microcalorimetry, and HAADF-STEM etc. reveal that Zn modifier reduces the number of Lewis acid sites on the catalyst surface. Moreover, it could modify Pt sites and preferentially cover the step sites, which decrease surface energy and retard the sintering of Pt particle, then prohibiting the further dehydrogenation of ethylene to ethylidyne. Consequently, the good stability is realized due to anti-sintering and the decrease of coke formation on the Pt Zn2/Al2 O3 catalyst.展开更多
基金supported by the National Natural Science Foundation of China(No.22162004)the Natural Science Foundation of Guangxi Province(No.2022JJD120011)the Opening Project of Guangxi Key Laboratory of Information Materials(No.211025-K).
文摘It is still a lack of bifunctional catalysts for ammonia oxidation reaction(AOR)and hydrogen evolution reaction(HER)due to their different reaction mechanisms.In this work,P is doped into PtZn alloy by calcination with NaH_(2)PO_(2) as P source to induce the lattice tensile strain of Pt and the electronic interaction between P and Zn,which optimizes the AOR and HER activity simultaneously.The sample with the optimal P content can drive the AOR peak current density of 293.6 mA·mgPt^(-1),which is almost 2.7 times of Pt.For HER,the overpotential at^(-1)0 mA·cm^(-2) is only 23 mV with Tafel slope of 34.1 mV·dec^(-1).Furthermore,only 0.59 V is needed to obtain 50 mA·mgPt^(-1) for ammonia electrolysis under a two-electrode system.Therefore,this work shows an ingenious method to design bifunctional catalysts for ammonia electrolysis.
基金This work was financially supported by National Key Research and Development Program(2018YFB1502503).
文摘The oxygen reduction reaction(ORR)electrocatalytic activity of Pt-based catalysts can be significantly improved by supporting Pt and its alloy nanoparticles(NPs)on a porous carbon support with large surface area.However,such catalysts are often obtained by constructing porous carbon support followed by depositing Pt and its alloy NPs inside the pores,in which the migration and agglomeration of Pt NPs are inevitable under harsh operating conditions owing to the relatively weak interaction between NPs and carbon support.Here we develop a facile electrospinning strategy to in-situ prepare small-sized PtZn NPs supported on porous nitrogen-doped carbon nanofibers.Electrochemical results demonstrate that the as-prepared PtZn alloy catalyst exhibits excellent initial ORR activity with a half-wave potential(E_(1/2))of 0.911 V versus reversible hydrogen electrode(vs.RHE)and enhanced durability with only decreasing 11 mV after 30,000 potential cycles,compared to a more significant drop of 24 mV in E_(1/2)of Pt/C catalysts(after 10,000 potential cycling).Such a desirable performance is ascribed to the created triple-phase reaction boundary assisted by the evaporation of Zn and strengthened interaction between nanoparticles and the carbon support,inhibiting the migration and aggregation of NPs during the ORR.
基金financial support from the National Natural Science Foundation of China (NSFC-21776251, 21625604, 21671172 and 91934302)。
文摘Electrochemical ozone production(EOP) via water electrolysis represents an attractive method for the generation of high-purity O3. Herein, the X-PtZn/Zn-N-C electrocatalysts show a strong structural sensitive behavior depends on the size of the PtZn nanoparticles and their EOP activity exhibits a volcano-type dependence for the O3 performance in neutral media. The 7.7-PtZn/Zn-N-C exhibits EOP current efficiency of 4.2%, and shows the prominent performance in the production of gaseous O3 with a value of 1647 ppb at 30 min, which is almost 4-fold compared to 2.2-Pt Zn/Zn-N-C. Based on the experiments and theoretical calculations, the performance of the EOP process was determined by the nanoparticle size-effect and the synergistic effect between the PtZn nanoparticles and atomically dispersed Zn-N-C. Furthermore, the fivemembered cyclic structure of O3 can be stabilized between the PtZn nanoparticle and the Zn-N-C support,indicating that O3 is produced at the interface.
基金supported by the National Science and Technology Major Project(2017YFB0102900)the National Natural Science Foundation of China(21633008,21673221 and U1601211)Jilin Province Science and Technology Development Program(20200201001JC,20190201270JC and 20180101030JC)。
文摘Highly active and durable electrocatalysts with minimal Pt usage are desired for commercial fuel cell applications.Herein,we present a highly dispersed L1_(0)-PtZn intermetallic catalyst for the oxygen reduction reaction(ORR),in which a Zn-rich metal–organic framework(MOF)is used as an in situ generated support to confine the growth of PtZn particles.Despite requiring high-temperature treatment,the intermetallic L1_(0)-PtZn particles exhibit a small mean size of3.95 nm,which confers the catalysts with high electrochemical active surface area(81.9 m^(2)g_(Pt)^(-1))and atomic utilization.The Pt electron structure and binding strength between Pt and oxygen intermediates are optimized through ligand effect and compressive strain.These advantages result in ORR mass activity and specific activity of 0.926 A mg_(Pt)^(-1) and 1.13 mA cm^(-2),respectively,which are 5.4 and 4.0 times those of commercial Pt/C.The stable L10structure provides the catalysts with superb durability;only a halfwave potential loss of 11 mV is observed after 30,000 cycles of accelerated stress tests,through which the structure evolves into a more stable PtZn-Pt core-shell structure.Therefore,the development of a Zn-based MOF as a catalyst support is demonstrated,providing a synergy strategy to prepare highly dispersed intermetallic alloys with high activity and durability.
基金supported by the National Natural Science Foundation of China (NNSFC 21573232, 21576251, 21676269, 21878283)the Strategic Priority Research Program of Chinese Academy of Sciences Grant No. XDB17000000+2 种基金National Key Projects for Fundamental Research and Development of China (2016YFA0202801)The Youth Innovation Promotion Association CAS (2017223)Department of Science and Technology of Liaoning province under contract of 2015020086-101。
文摘Catalytic ethane dehydrogenation(EDH) to ethylene over Pt-based catalysts has received increasing interests in recent years as it is a potential alternative route to conventional steam cracking. However, the catalysts used in this reaction often suffer from rapid deactivation due to serious coke deposition and metal sintering. Herein, we reported the effects of Zn modification on the stability of Pt/Al2 O3 for EDH.The Zn-modified sample(PtZn2/Al2 O3) exhibits stable ethane conversion(20%) with over 95% ethylene selectivity. More importantly, it exhibits a significantly low deactivation rate of only 0.003 h-1 at 600 °C for70 h, which surpasses most of previously reported catalysts. Detailed characterizations including in situ FT-IR, ethylene adsorption microcalorimetry, and HAADF-STEM etc. reveal that Zn modifier reduces the number of Lewis acid sites on the catalyst surface. Moreover, it could modify Pt sites and preferentially cover the step sites, which decrease surface energy and retard the sintering of Pt particle, then prohibiting the further dehydrogenation of ethylene to ethylidyne. Consequently, the good stability is realized due to anti-sintering and the decrease of coke formation on the Pt Zn2/Al2 O3 catalyst.