The search for a suitable cocatalyst for graphitic carbon nitride(g-C_(3)N_(4)) to realize efficient photocatalytic hydrogen(H_(2)) evolution has been regarded as one of the most valid tactics to alleviate energy cris...The search for a suitable cocatalyst for graphitic carbon nitride(g-C_(3)N_(4)) to realize efficient photocatalytic hydrogen(H_(2)) evolution has been regarded as one of the most valid tactics to alleviate energy crisis.Herein,a ternary Pt-tipped Au nanorods(Pt-Au)/g-C_(3)N_(4) heterostructure is constructed,which shows excellent H_(2) production performance in visible and near-infrared(NIR) region,especially in NIR region with a rate of 51.6 μmol g^(-1)h^(-1).Therein,not only is the optical absorption ability of g-C_(3)N_(4) broadened,the light absorption range is also extended to NIR region through introduction of Pt-Au architectures.Besides,analysis of the hot electrons generated in energy relaxation of plasmon indicates hot electron transfers fromexcited Au nanorods to Pt nanoparticles,resulting in H_(2) evolution.Compared with bare g-C_(3)N_(4),the superior photocatalytic activity could be attributed to the surface plasmon resonance effect(SPR) of Au nanorods and the electron-sink function of Pt nanoparticles.This work provides an insight into the improvement of photocatalytic performance via combination of NIR-responsive plasmon metal with photocatalysts.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 22162009 and 22006052)Key Laboratory of Solid Waste Resource Utilization and Environmental Protection of Haikou City。
文摘The search for a suitable cocatalyst for graphitic carbon nitride(g-C_(3)N_(4)) to realize efficient photocatalytic hydrogen(H_(2)) evolution has been regarded as one of the most valid tactics to alleviate energy crisis.Herein,a ternary Pt-tipped Au nanorods(Pt-Au)/g-C_(3)N_(4) heterostructure is constructed,which shows excellent H_(2) production performance in visible and near-infrared(NIR) region,especially in NIR region with a rate of 51.6 μmol g^(-1)h^(-1).Therein,not only is the optical absorption ability of g-C_(3)N_(4) broadened,the light absorption range is also extended to NIR region through introduction of Pt-Au architectures.Besides,analysis of the hot electrons generated in energy relaxation of plasmon indicates hot electron transfers fromexcited Au nanorods to Pt nanoparticles,resulting in H_(2) evolution.Compared with bare g-C_(3)N_(4),the superior photocatalytic activity could be attributed to the surface plasmon resonance effect(SPR) of Au nanorods and the electron-sink function of Pt nanoparticles.This work provides an insight into the improvement of photocatalytic performance via combination of NIR-responsive plasmon metal with photocatalysts.