Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomi...Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.展开更多
Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NC...Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NCs with concave octahedron (COH), porous octahedron (POH), yolk-shell (YSH), and nanoflower (NOF) structures were fabricated by altering the sequential reduction kinetics in a one-pot aqueous phase. The effect of the reaction kinetics on the formation of Pt-Cu bimetallic NCs with different morphologies was analyzed quantitatively. The concentrations of glycine and metal cation are demonstrated to play a key role in the reduction of Pt(Ⅳ) and Cu(Ⅱ) ions; these significantly affected the morphology of Pt-Cu NCs. These Pt-Cu alloy NCs exhibit substantially enhanced catalytic activity and durability for methanol and formic acid oxidation compared to the commercial Pt/C catalyst. Specifically, the COH and NOF Pt-Cu NCs with more step atoms, intragranular dislocations, and protrusions showed superior electrochemical properties than those of POH and YSH Pt-Cu NCs. The structure- property relationship between the Pt-Cu NCs and their electrochemical performances was also investigated in depth.展开更多
Fine and well dispersed Pt-Cu bimetallic nanoparticles stabilized by polyvinyl pyrrolidone (PVP) were synthesized by alkaline polyol method. The molar ratio of Pt to Cu was 1 : 1. Further, the Pt-Cu bimetallic nano...Fine and well dispersed Pt-Cu bimetallic nanoparticles stabilized by polyvinyl pyrrolidone (PVP) were synthesized by alkaline polyol method. The molar ratio of Pt to Cu was 1 : 1. Further, the Pt-Cu bimetallic nanoparticles were supported on alumina and their catalytic behavior in methane combustion was investigated. The as-prepared as well as the supported Pt-Cu nanoparticles were characterized by transmission elec- tron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fractal analysis and X-ray diffraction (XRD). The dependence of methane combustion on the morphology and surface composition of Pt-Cu nanoparticles was analyzed based on the experimental results.展开更多
Alloying and nanostructuring are two strategies used to facilitate the efficient electrocatalysis of the oxygen reduction reaction(ORR)by Pt,where the high index surfaces(HISs)of Pt exhibit superior activity for ORR.H...Alloying and nanostructuring are two strategies used to facilitate the efficient electrocatalysis of the oxygen reduction reaction(ORR)by Pt,where the high index surfaces(HISs)of Pt exhibit superior activity for ORR.Here,we report the fabrication of PtCu3 nanodendrites possessing rich spiny branches exposing n(111)×(110)HISs.The dendrites were formed through an etching‐modulated seeding and growing strategy.Specifically,an oxidative atmosphere was initially applied to form the concaved nanocubes of the Pt‐Cu seeds,which was then switched to an inert atmosphere to promote an explosive growth of dendrites.Separately,the oxidative or inert atmosphere failed to produce this hyperbranched structure.Electrochemical dealloying of the PtCu3 nanodendrites produced Pt3Cu shells with Pt‐rich surfaces where HIS‐exposed dendrite structures were maintained.The resulting PtCu_(3)@Pt_(3)Cu@Pt nanodendrites in 0.1 M HClO4 exhibited excellent mass and area specific activities for ORR,which were 14 and 24 times higher than that of commercial Pt/C,respectively.DFT calculations revealed that Cu alloying and HISs both contributed to the significantly enhanced activity of Pt,and that the oxygen binding energy on the step sites of HISs on the PtCu_(3)@Pt_(3)Cu@Pt nanodendrites approached the optimal value to achieve a near peak‐top ORR activity.展开更多
In this study,isobutane dehydrogenation to isobutene reaction was carried out in a series of PtCu bimetallic catalysts prepared by coimpregnation method.The catalysts were characterized by means of several techniques,...In this study,isobutane dehydrogenation to isobutene reaction was carried out in a series of PtCu bimetallic catalysts prepared by coimpregnation method.The catalysts were characterized by means of several techniques,including XRD,N_(2) adsorptiondesorption,TEM,XPS,H2TPR and TG.The results show that the existence of LaAlO_(3) perovskite can enhance the dispersion and sintering resistance of metal nanoparticles and facilitate the transfer of carbon deposits from active sites to the support.Interestingly,the perovskite nanoparticles can also inhibit the reduction of CuOx and the formation of PtCu alloys,resulting in the suitable interaction between Pt and Cu.The PtCu/LaAlO_(3)/SiO_(2)catalyst exhibits the optimal dehydrogenation performance with an isobutane conversion of 47%and isobutene selectivity of 92%after 310 min reaction,which was ascribed to the unique role of LaAlO_(3) perovskite as well as the appropriate PtCu interaction.展开更多
Atomic Force Microscopy (AFM) mechanical lithography is a simple but significant method for nanofabrication. In this work, we used this method to construct nanos- tructures on Pt/Cu bilayer metal electrodes under ambi...Atomic Force Microscopy (AFM) mechanical lithography is a simple but significant method for nanofabrication. In this work, we used this method to construct nanos- tructures on Pt/Cu bilayer metal electrodes under ambient conditions in air. The influence of various scratch parameters, such as the applied force, scan velocity and circle times, on the lithography patterns was investigated. The Pt-Cu-CuxO-Cu-Pt nanostructure was constructed by choosing suitable scratch parameters and oxidation at room temperature. The properties of the scratched regions were also investigated by friction force microscopy and conductive AFM (C-AFM). The I-V curves show symmetric and linear properties, and Ohmic contacts were formed. These results indicate that AFM mechanical lithography is a powerful tool for fabricating novel metal-semiconductor nanoelectronic devices.展开更多
The mean sputter depth depends on the surface composition gradient during ion implantation.For the high fluence ion implantation into a Pt-Cu alloy, the surface composition gradient of Cu is so large that the differen...The mean sputter depth depends on the surface composition gradient during ion implantation.For the high fluence ion implantation into a Pt-Cu alloy, the surface composition gradient of Cu is so large that the difference in mean sputter depth between Pt and Cu, is significant. However, for the high fluence ion implantation into 10B-11B isotope mixture, the surface composition gradient of 10B is so small that the difference in mean sputter depth between 10B and 11B is insignificant.展开更多
In this paper, we reported a solvothermal method for the synthesis of octahedral Pt-Cu bimetallic alloy nanocrystals (NCs) with tunable composition. Inspired by the result from our previous exploration on octahedral...In this paper, we reported a solvothermal method for the synthesis of octahedral Pt-Cu bimetallic alloy nanocrystals (NCs) with tunable composition. Inspired by the result from our previous exploration on octahedral Pt-Cu alloy NCs that Cu contents can be tuned from 10 % to 50 %, we further tuned the Cu portion from 50 % to 75 % by simply introducing n-butylamine in the reaction system. It is believed that n-butylamine plays a key role in breaking through a thermodynamic constraint in the formation of Pt-Cu alloy nanocrystals (NCs). The synergistic effect of underpotential deposition-like Cu reduction and the different complexion abilities of amine group of n-butylamine with two metal species effectively tuned the reduction kinetics, by which each reduced Pt atom is able to catalyze reduction of more Cu atoms and be fully covered with 12 Cu atoms in the Pt-Cu alloy crystal, while Cu precursor is not able to be reduced solely and bind solely with Cu atoms, resulting in the successful tuning of Cu composition from 50 % to 75 %. In addition, we investigated the electro-catalytic activity of Pt-Cu bimetallic alloy NCs with different composition in electro-oxidation of methanol. The as-prepared PtCu3 NCs exhibit excellent electro-catalytic performance and stability in comparison with commercial Pt black and other compositional Pt-Cu alloy NCs.展开更多
Although lithium(Li)and sodium(Na)metals can be selected as the promising anode materials for next‐generation rechargeable batteries of high energy density,their practical applications are greatly restricted by the u...Although lithium(Li)and sodium(Na)metals can be selected as the promising anode materials for next‐generation rechargeable batteries of high energy density,their practical applications are greatly restricted by the uncontrollable dendrite growth.Herein,a platinum(Pt)–copper(Cu)alloycoated Cu foam(Pt–Cu foam)is prepared and then used as the substrate for Li and Na metal anodes.Owing to the ultrarough morphology with a threedimensional porous structure and the quite large surface area as well as lithiophilicity and sodiophilicity,both Li and Na dendrite growths are significantly suppressed on the substrate.Moreover,during Li plating,the lithiated Pt atoms can dissolve into Li phase,leaving a lot of microsized holes on the substrate.During Na plating,although the sodiated Pt atoms cannot dissolve into Na phase,the sodiation of Pt atoms elevates many microsized blocks above the current collector.Either the holes or the voids on the surface of Pt–Cu foam what can be extra place for deposited alkali metal,what effectively relaxes the internal stress caused by the volume exchange during Li and Na plating/stripping.Therefore,the symmetric batteries of Li@Pt–Cu foam and Na@Pt–Cu foam have both achieved long‐term cycling stability even at ultrahigh areal capacity at 20 mAh cm−2.展开更多
A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were o...A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were obtained. To understand the effect of Cu and Ce, the structure and physico-chemistry properties of the catalysts were characterized and analyzed, and the catalytic behaviors were investigated in a direct dehydrogenation of propane to propene. The results show that the Pt^(4+), Cu^(2+), and Ce^(3+) ions can be incorporated into the brucite-like layers and the Ce content significantly affects the interaction strength between Pt and Cu and the dehydrogenation performance of propane. Under the reaction conditions, the highest propane conversion(45%) with 89% selectivity to propene and a 40% propene yield were achieved with a 0.3 wt% Ce-modified PtCu/Mg(Al)O catalyst. The improved catalytic performance is related to the easy formation of Pt–Cu alloy phase, excellent resistance to sintering, and coke deposits of active components modified by CeO_2.展开更多
研究了以Pt-Cu-S/C作催化剂,3-氯-4-氟硝基苯常压加氢制备3-氯-4-氟苯胺的方法,考察了该催化剂对3-氯-4-氟硝基苯的催化加氢反应的性能,探讨了影响加氢反应的主要因素。实验表明,催化剂具有较高的催化活性和选择性。当催化剂中Pt的质量...研究了以Pt-Cu-S/C作催化剂,3-氯-4-氟硝基苯常压加氢制备3-氯-4-氟苯胺的方法,考察了该催化剂对3-氯-4-氟硝基苯的催化加氢反应的性能,探讨了影响加氢反应的主要因素。实验表明,催化剂具有较高的催化活性和选择性。当催化剂中Pt的质量分数为1%,Cu的质量分数为0.1%,S的质量分数为0.03%,催化剂用量为硝基物质量的0.5%,溶剂用量2 m L甲醇/1 g硝基物,反应温度80℃,压力为1.5 MPa时,3-氯-4-氟苯胺的产率为98%,纯度达99.5%以上。展开更多
文摘Single-atom Pt catalysts are designed to promote efficient atom utilization,whereas effective decrease of Pt loading and improvement of photocatalytic activity in monoatomic Pt-deposited systems is still ongoing.Atomically dispersed metal species in crystalline carbon nitride are still challenging owing to their high crystallization and structural stability.In this study,we developed a novel single-atomic Pt-Cu catalyst for reducing noble metal loading by combining Pt with earth-abundant Cu atoms and enhancing photocatalytic CO_(2)reduction.N-vacancy-rich crystalline carbon nitride was used as a fine-tuning ligand for isolated Pt-Cu atom dispersion based on its accessible functional N vacancies as the seeded centers.The synthesized dimetal Pt-Cu atoms on crystalline carbon nitride(Pt Cu-cr CN)exhibited high selectivity and activity for CO_(2)conversion without the addition of any cocatalyst or sacrificial agent.In particular,we demonstrated that the diatomic Pt-Cu exhibited high mass activity with only 0.32 wt% Pt loading and showed excellent photocatalytic selectivity toward CH_(4)generation.The mechanism of CO_(2)photoreduction for Pt Cu-cr CN was proposed based on the observations and analysis of aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images,in situ irradiated X-ray photoelectron spectroscopy,and in situ diffuse reflectance infrared Fourier transform spectroscopy.The findings of this work provide insights for abrogating specific bifunctional atomic metal sites in noble metal-based photocatalysts by reducing noble metal loading and maximizing their effective mass activity.
基金This work was supported by the China Postdoctoral Science Foundation (No. 2017M610405), the Shandong Provincial Natural Science Foundation (Nos. ZR2015BM008 and ZR2017BB029) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
文摘Shape-controlled synthesis of Pt-Cu alloy nanocrystals (NCs) with unique geometries is of great importance in the rational design and deterministic synthesis of highly active electrocatalysts. Herein, Pt-Cu alloy NCs with concave octahedron (COH), porous octahedron (POH), yolk-shell (YSH), and nanoflower (NOF) structures were fabricated by altering the sequential reduction kinetics in a one-pot aqueous phase. The effect of the reaction kinetics on the formation of Pt-Cu bimetallic NCs with different morphologies was analyzed quantitatively. The concentrations of glycine and metal cation are demonstrated to play a key role in the reduction of Pt(Ⅳ) and Cu(Ⅱ) ions; these significantly affected the morphology of Pt-Cu NCs. These Pt-Cu alloy NCs exhibit substantially enhanced catalytic activity and durability for methanol and formic acid oxidation compared to the commercial Pt/C catalyst. Specifically, the COH and NOF Pt-Cu NCs with more step atoms, intragranular dislocations, and protrusions showed superior electrochemical properties than those of POH and YSH Pt-Cu NCs. The structure- property relationship between the Pt-Cu NCs and their electrochemical performances was also investigated in depth.
文摘Fine and well dispersed Pt-Cu bimetallic nanoparticles stabilized by polyvinyl pyrrolidone (PVP) were synthesized by alkaline polyol method. The molar ratio of Pt to Cu was 1 : 1. Further, the Pt-Cu bimetallic nanoparticles were supported on alumina and their catalytic behavior in methane combustion was investigated. The as-prepared as well as the supported Pt-Cu nanoparticles were characterized by transmission elec- tron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), fractal analysis and X-ray diffraction (XRD). The dependence of methane combustion on the morphology and surface composition of Pt-Cu nanoparticles was analyzed based on the experimental results.
文摘Alloying and nanostructuring are two strategies used to facilitate the efficient electrocatalysis of the oxygen reduction reaction(ORR)by Pt,where the high index surfaces(HISs)of Pt exhibit superior activity for ORR.Here,we report the fabrication of PtCu3 nanodendrites possessing rich spiny branches exposing n(111)×(110)HISs.The dendrites were formed through an etching‐modulated seeding and growing strategy.Specifically,an oxidative atmosphere was initially applied to form the concaved nanocubes of the Pt‐Cu seeds,which was then switched to an inert atmosphere to promote an explosive growth of dendrites.Separately,the oxidative or inert atmosphere failed to produce this hyperbranched structure.Electrochemical dealloying of the PtCu3 nanodendrites produced Pt3Cu shells with Pt‐rich surfaces where HIS‐exposed dendrite structures were maintained.The resulting PtCu_(3)@Pt_(3)Cu@Pt nanodendrites in 0.1 M HClO4 exhibited excellent mass and area specific activities for ORR,which were 14 and 24 times higher than that of commercial Pt/C,respectively.DFT calculations revealed that Cu alloying and HISs both contributed to the significantly enhanced activity of Pt,and that the oxygen binding energy on the step sites of HISs on the PtCu_(3)@Pt_(3)Cu@Pt nanodendrites approached the optimal value to achieve a near peak‐top ORR activity.
基金the National Natural Science Foundation of China(21776214)and State Key Laboratory of Chemical Resource Engineering.
文摘In this study,isobutane dehydrogenation to isobutene reaction was carried out in a series of PtCu bimetallic catalysts prepared by coimpregnation method.The catalysts were characterized by means of several techniques,including XRD,N_(2) adsorptiondesorption,TEM,XPS,H2TPR and TG.The results show that the existence of LaAlO_(3) perovskite can enhance the dispersion and sintering resistance of metal nanoparticles and facilitate the transfer of carbon deposits from active sites to the support.Interestingly,the perovskite nanoparticles can also inhibit the reduction of CuOx and the formation of PtCu alloys,resulting in the suitable interaction between Pt and Cu.The PtCu/LaAlO_(3)/SiO_(2)catalyst exhibits the optimal dehydrogenation performance with an isobutane conversion of 47%and isobutene selectivity of 92%after 310 min reaction,which was ascribed to the unique role of LaAlO_(3) perovskite as well as the appropriate PtCu interaction.
基金Supported by the National Natural Science Foundation of China (Grant No. 90306010)the Program for New Century Excellent Talents in Uni-versity of China (Grant No. NCET-04-0653)+1 种基金the National Basic Research Program of China (Grant No. 2007CB616911)the Science and Technology Department of Henan Province (Grant No. 072300420100)
文摘Atomic Force Microscopy (AFM) mechanical lithography is a simple but significant method for nanofabrication. In this work, we used this method to construct nanos- tructures on Pt/Cu bilayer metal electrodes under ambient conditions in air. The influence of various scratch parameters, such as the applied force, scan velocity and circle times, on the lithography patterns was investigated. The Pt-Cu-CuxO-Cu-Pt nanostructure was constructed by choosing suitable scratch parameters and oxidation at room temperature. The properties of the scratched regions were also investigated by friction force microscopy and conductive AFM (C-AFM). The I-V curves show symmetric and linear properties, and Ohmic contacts were formed. These results indicate that AFM mechanical lithography is a powerful tool for fabricating novel metal-semiconductor nanoelectronic devices.
文摘The mean sputter depth depends on the surface composition gradient during ion implantation.For the high fluence ion implantation into a Pt-Cu alloy, the surface composition gradient of Cu is so large that the difference in mean sputter depth between Pt and Cu, is significant. However, for the high fluence ion implantation into 10B-11B isotope mixture, the surface composition gradient of 10B is so small that the difference in mean sputter depth between 10B and 11B is insignificant.
基金supported by the National Basic Research Program of China(2011CBA00508 and 2015CB932301)the National Natural Science Foundation of China(21131005,21333008,and J1310024)the Natural Science Foundation of Fujian Province of China(2014J01058)
文摘In this paper, we reported a solvothermal method for the synthesis of octahedral Pt-Cu bimetallic alloy nanocrystals (NCs) with tunable composition. Inspired by the result from our previous exploration on octahedral Pt-Cu alloy NCs that Cu contents can be tuned from 10 % to 50 %, we further tuned the Cu portion from 50 % to 75 % by simply introducing n-butylamine in the reaction system. It is believed that n-butylamine plays a key role in breaking through a thermodynamic constraint in the formation of Pt-Cu alloy nanocrystals (NCs). The synergistic effect of underpotential deposition-like Cu reduction and the different complexion abilities of amine group of n-butylamine with two metal species effectively tuned the reduction kinetics, by which each reduced Pt atom is able to catalyze reduction of more Cu atoms and be fully covered with 12 Cu atoms in the Pt-Cu alloy crystal, while Cu precursor is not able to be reduced solely and bind solely with Cu atoms, resulting in the successful tuning of Cu composition from 50 % to 75 %. In addition, we investigated the electro-catalytic activity of Pt-Cu bimetallic alloy NCs with different composition in electro-oxidation of methanol. The as-prepared PtCu3 NCs exhibit excellent electro-catalytic performance and stability in comparison with commercial Pt black and other compositional Pt-Cu alloy NCs.
基金The authors acknowledge the support of the National Nature Science Foundation of China (21908124)Zhaoqing Xijiang Talent Program.
文摘Although lithium(Li)and sodium(Na)metals can be selected as the promising anode materials for next‐generation rechargeable batteries of high energy density,their practical applications are greatly restricted by the uncontrollable dendrite growth.Herein,a platinum(Pt)–copper(Cu)alloycoated Cu foam(Pt–Cu foam)is prepared and then used as the substrate for Li and Na metal anodes.Owing to the ultrarough morphology with a threedimensional porous structure and the quite large surface area as well as lithiophilicity and sodiophilicity,both Li and Na dendrite growths are significantly suppressed on the substrate.Moreover,during Li plating,the lithiated Pt atoms can dissolve into Li phase,leaving a lot of microsized holes on the substrate.During Na plating,although the sodiated Pt atoms cannot dissolve into Na phase,the sodiation of Pt atoms elevates many microsized blocks above the current collector.Either the holes or the voids on the surface of Pt–Cu foam what can be extra place for deposited alkali metal,what effectively relaxes the internal stress caused by the volume exchange during Li and Na plating/stripping.Therefore,the symmetric batteries of Li@Pt–Cu foam and Na@Pt–Cu foam have both achieved long‐term cycling stability even at ultrahigh areal capacity at 20 mAh cm−2.
基金supported by the National Natural Science Foundation of China(No.21776214)the Natural Science Foundation of Jiangsu Province(No.BK20161166)the State Key Laboratory of Chemical Resource Engineering
文摘A series of PtCuCeMgAl quintuple hydrotalcite-like compounds with different Ce contents were synthesized by one-pot method. After calcining and reduction, CeO_2-modified Mg(Al)O-supported Pt–Cu alloy catalysts were obtained. To understand the effect of Cu and Ce, the structure and physico-chemistry properties of the catalysts were characterized and analyzed, and the catalytic behaviors were investigated in a direct dehydrogenation of propane to propene. The results show that the Pt^(4+), Cu^(2+), and Ce^(3+) ions can be incorporated into the brucite-like layers and the Ce content significantly affects the interaction strength between Pt and Cu and the dehydrogenation performance of propane. Under the reaction conditions, the highest propane conversion(45%) with 89% selectivity to propene and a 40% propene yield were achieved with a 0.3 wt% Ce-modified PtCu/Mg(Al)O catalyst. The improved catalytic performance is related to the easy formation of Pt–Cu alloy phase, excellent resistance to sintering, and coke deposits of active components modified by CeO_2.
文摘研究了以Pt-Cu-S/C作催化剂,3-氯-4-氟硝基苯常压加氢制备3-氯-4-氟苯胺的方法,考察了该催化剂对3-氯-4-氟硝基苯的催化加氢反应的性能,探讨了影响加氢反应的主要因素。实验表明,催化剂具有较高的催化活性和选择性。当催化剂中Pt的质量分数为1%,Cu的质量分数为0.1%,S的质量分数为0.03%,催化剂用量为硝基物质量的0.5%,溶剂用量2 m L甲醇/1 g硝基物,反应温度80℃,压力为1.5 MPa时,3-氯-4-氟苯胺的产率为98%,纯度达99.5%以上。