This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x...This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.展开更多
In this paper, we have introduced the concepts of pseudomonotonicity properties for nonlinear transformations defined on Euclidean Jordan algebras. The implications between this property and other P-properties have be...In this paper, we have introduced the concepts of pseudomonotonicity properties for nonlinear transformations defined on Euclidean Jordan algebras. The implications between this property and other P-properties have been studied. More importantly, we have solved the solvability problem of the nonlinear pseudomonotone complementarity problems over symmetric cones.展开更多
Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in th...Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.展开更多
2020年Pham Ky Anh等人在Hilbert空间中提出了一种求解映射伪单调且Lipschitz连续的自适应投影算法(简记为PDNA).该算法无需知道映射的Lipschitz系数,且具有强收敛的结果.注意到算法的步长与其收敛速度密切相关,通常大步长的算法具有更...2020年Pham Ky Anh等人在Hilbert空间中提出了一种求解映射伪单调且Lipschitz连续的自适应投影算法(简记为PDNA).该算法无需知道映射的Lipschitz系数,且具有强收敛的结果.注意到算法的步长与其收敛速度密切相关,通常大步长的算法具有更好的收敛速度.Liu和Yang提出了一种求解拟单调变分不等式的自适应算法(简记为LYA),LYA的步长比PDNA中的步长长.本文提出了一种自适应的求解映射伪单调且Lipschitz连续的次梯度外梯度投影算法.新算法的步长比LYA长,且可以退化为LYA中的步长.在与PDNA相同的假设条件下证明了新算法的强收敛性.数值实验表明新算法有更好的数值实验结果.展开更多
In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient ext...In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.展开更多
This paper deals with the initial-value problem of nonlinear evolution inclusions of the form dB(u)/dt + A(u) f, v0 ∈ B(u)(0), where the operator B is induced by a subgradient and A is pseudomonotone. Existe...This paper deals with the initial-value problem of nonlinear evolution inclusions of the form dB(u)/dt + A(u) f, v0 ∈ B(u)(0), where the operator B is induced by a subgradient and A is pseudomonotone. Existence theorem is established via the time discretization technique and the regularization method. In contrast to the previous results, here we impose a weaker coerciveness condition on A and remove the strong monotonicity from B.展开更多
In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone ...In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.展开更多
In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our me...In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.展开更多
文摘This is the first part of a work on second order nonlinear, nonmonotone evolution inclusions defined in the framework of an evolution triple of spaces and with a multivalued nonlinearity depending on both x(t) and x(t). In this first part we prove existence and relaxation theorems. We consider the case of an usc, convex valued nonlinearity and we show that for this problem the solution set is nonempty and compact in C^1 (T, H). Also we examine the Isc, nonconvex case and again we prove the existence of solutions. In addition we establish the existence of extremal solutions and by strengthening our hypotheses, we show that the extremal solutions are dense in C^1 (T, H) to the solutions of the original convex problem (strong relaxation). An example of a nonlinear hyperbolic optimal control problem is also discussed.
基金supported by the Natural Science Basic Research Program of Shaanxi (Program No. 2023-JCYB-048)the National Natural Science Foundation of China (Program No. 11601406)。
文摘In this paper, we have introduced the concepts of pseudomonotonicity properties for nonlinear transformations defined on Euclidean Jordan algebras. The implications between this property and other P-properties have been studied. More importantly, we have solved the solvability problem of the nonlinear pseudomonotone complementarity problems over symmetric cones.
文摘Many solutions of variational inequalities have been proposed,among which the subgradient extragradient method has obvious advantages.Two different algorithms are given for solving variational inequality problem in this paper.The problem we study is defined in a real Hilbert space and has L-Lipschitz and pseudomonotone condition.Two new algorithms adopt inertial technology and non-monotonic step size rule,and their convergence can still be proved when the value of L is not given in advance.Finally,some numerical results are designed to demonstrate the computational efficiency of our two new algorithms.
文摘2020年Pham Ky Anh等人在Hilbert空间中提出了一种求解映射伪单调且Lipschitz连续的自适应投影算法(简记为PDNA).该算法无需知道映射的Lipschitz系数,且具有强收敛的结果.注意到算法的步长与其收敛速度密切相关,通常大步长的算法具有更好的收敛速度.Liu和Yang提出了一种求解拟单调变分不等式的自适应算法(简记为LYA),LYA的步长比PDNA中的步长长.本文提出了一种自适应的求解映射伪单调且Lipschitz连续的次梯度外梯度投影算法.新算法的步长比LYA长,且可以退化为LYA中的步长.在与PDNA相同的假设条件下证明了新算法的强收敛性.数值实验表明新算法有更好的数值实验结果.
基金funded by the University of Science,Vietnam National University,Hanoi under project number TN.21.01。
文摘In this paper,we investigate pseudomonotone and Lipschitz continuous variational inequalities in real Hilbert spaces.For solving this problem,we propose a new method that combines the advantages of the subgradient extragradient method and the projection contraction method.Some very recent papers have considered different inertial algorithms which allowed the inertial factor is chosen in[0;1].The purpose of this work is to continue working in this direction,we propose another inertial subgradient extragradient method that the inertial factor can be chosen in a special case to be 1.Under suitable mild conditions,we establish the weak convergence of the proposed algorithm.Moreover,linear convergence is obtained under strong pseudomonotonicity and Lipschitz continuity assumptions.Finally,some numerical illustrations are given to confirm the theoretical analysis.
基金supported by NSFC (10971019)Scientific Research Fund of Guangxi Education Department (201012MS067)Hunan Provincial Innovation Foundation For Postgraduate (CX2010B117)
文摘This paper deals with the initial-value problem of nonlinear evolution inclusions of the form dB(u)/dt + A(u) f, v0 ∈ B(u)(0), where the operator B is induced by a subgradient and A is pseudomonotone. Existence theorem is established via the time discretization technique and the regularization method. In contrast to the previous results, here we impose a weaker coerciveness condition on A and remove the strong monotonicity from B.
文摘In this paper, a nonlinear hemivariational inequality of second order with a forcing term of subcritical growth is studied. Using techniques from multivalued analysis and the theory of nonlinear operators of monotone type, an existence theorem for the Dirichlet boundary value problem is proved.
基金funded by National University ofCivil Engineering(NUCE)under grant number 15-2020/KHXD-TD。
文摘In this work,we investigate a classical pseudomonotone and Lipschitz continuous variational inequality in the setting of Hilbert space,and present a projection-type approximation method for solving this problem.Our method requires only to compute one projection onto the feasible set per iteration and without any linesearch procedure or additional projections as well as does not need to the prior knowledge of the Lipschitz constant and the sequentially weakly continuity of the variational inequality mapping.A strong convergence is established for the proposed method to a solution of a variational inequality problem under certain mild assumptions.Finally,we give some numerical experiments illustrating the performance of the proposed method for variational inequality problems.