In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and...In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and designed to substitute the Ca and Zr sites of zirconolite with general stoichiometry of Ca1-xZr1-xNd2 xTi2O7(0≤x≤0.3). Density of Fe-Nd-O sample reaches a maximum value of 4.13 g/cm^2 after being sintered at 1325 ℃ for 42 h. Three major phases, namely zirconolite, perovskite and pseudobrookite, are observed in all these samples. The EDX result shows that Nd2O3 can be successfully incorporated into the lattice structure of the prepared zirconolite-rich minerals and replace the Ca sites of zirconolite and perovskite with Fe3+ as the charge-compensating ion. Furthermore, the thermal conductivities are all in the range of 1.51-1.67 W/(m·K). The normalized elemental leaching rates of Ca and Nd in the Fe-Nd-0.2 sample keep in low values of 6.20 × 10^-2 and 4.86 × 10^-4 g/(m^2·d) after 42 d.展开更多
It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resu...It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resulting in the formation of many abnormally grown grains with a grain size as large as 50 μm. To study this phenomenon, the grain growth behavior of high-entropy pseudobrookite ceramics was systematically investigated in this paper. The results demonstrate that the starting material powders first react with each other to form a high-entropy intermediate phase and calcined TiO_(2) powders (TiO_(2)-1100 ℃), and then as the sintering temperature increases, the formed high-entropy intermediate phase further reacts with TiO_(2)-1100 ℃ to form high-entropy pseudobrookite ceramics. Thus, in this system, in addition to the sluggish diffusion effect, the grain sizes of the high-entropy intermediate phase and TiO_(2)-1100 ℃ also affect the morphology of high-entropy pseudobrookite. Compared to nanosized TiO_(2), micron-sized TiO_(2) has a lower sintering activity. Therefore, the high-entropy intermediate phases (Mg,Co,Ni,Zn)TiO_(3) and TiO_(2)-1100 ℃ prepared with micron-sized starting materials exhibit lower grain sizes, finally resulting in the formation of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with small grain sizes. Moreover, nano-indentation and thermal conductivity tests were carried out on high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with different morphologies. The results show that the hardness of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) increases from 6.05 to 9.95 GPa as the grain size increases, whereas the thermal conductivity decreases from 2.091±0.006 to 1.583±0.006 W·m^(−1)·K^(−1). All these results indicate that high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with a small grain size is a potential material for thermal protection.展开更多
To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays(TONTAs), ZnFe_2O_4(ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltageassist...To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays(TONTAs), ZnFe_2O_4(ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltageassisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions(0.025 mg m L^(-1)) were kept under a60 V bias voltage for 1 h. After annealing at 750 °C for2 h, the heterostructured ZFO/Fe_2 TiO_5(FTO)/TiO_2 composite nanotube arrays were successfully obtained. Furthermore, Fe^(3+)was reduced to Fe^(2+)when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced thevisible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight.展开更多
Rutile (TiO2) is heavily used in pigments mid colormlts, mid the most abundmlt source of rutile is ilmeinte. Upon oxidation of ilmeinte, mtile cml be formed wiffl modest energy consumption; furfflermore, after leach...Rutile (TiO2) is heavily used in pigments mid colormlts, mid the most abundmlt source of rutile is ilmeinte. Upon oxidation of ilmeinte, mtile cml be formed wiffl modest energy consumption; furfflermore, after leaching, only a few byproducts are formed. Unfortunate- ly, one drawback is file necessarily long oxidative process of typically used mefflods. In fflis study, we show fflat a fluidized bed reactor cml be used to oxidize ilmeinte ore to rapidly form ruffle mid pseudobrookite (Fe2TiOs) phases. Ilmeinte was oxidized wiffl 5vo1% 02 in Ar at temperatures of 1173 K or 1223 K mid subsequently leached using a diluted H2SO4 solution to dissolve file pseudobrookite phase. The effects of acid concentration, temperature, mid cooling rate after oxidation were investigated. We show fflat file ilmeinte was rapidly oxidized to form rutile mid pseudobrookite phases at 1173 mid 1223 K in a 5vo1% O2/95vo1% Ar environment wifflin 40 min. The fmal maximum mtile yield was 84.2mo1% after leaching in (1 + 1) H2SO4 solution at 393 K for 12 h.展开更多
The research is devoted to the multicomponent system CaTiSiO5-YFeSnO5. The synthesis of solid solutions Ca1-xYxTi1-xSnxSi1-xFexO5 (x = 0 - 1.0, Δx = 0.1) was conducted in low-temperature plasma of hydrogen-oxygen fla...The research is devoted to the multicomponent system CaTiSiO5-YFeSnO5. The synthesis of solid solutions Ca1-xYxTi1-xSnxSi1-xFexO5 (x = 0 - 1.0, Δx = 0.1) was conducted in low-temperature plasma of hydrogen-oxygen flame. It was found that ions Ca2+, Ti4+ and Si4+ in the molecule of titanit may be substituted with t ions Y3+, Fe3+ and Sn4+. In this case, the system produces two phases of variable composition with broad regions of homogeneity. There were defined the boundaries of formed phases, crystallographic and electrical parameters of the solid solutions. All solid solutions have a semiconductor conductivity type, whose value is linearly dependent on the temperature and com- position of the sample.展开更多
As a type of titanate,the pseudobrookite(MTi_(2)O_(5)/M_(2)TiO_(5))exhibits a low thermal expansion coefficient and thermal conductivity,as well as excellent dielectric and solar spectrum absorption properties.However...As a type of titanate,the pseudobrookite(MTi_(2)O_(5)/M_(2)TiO_(5))exhibits a low thermal expansion coefficient and thermal conductivity,as well as excellent dielectric and solar spectrum absorption properties.However,the pseudobrookite is unstable and prone to decomposing below 1200℃,which limits the practical application of the pseudobrookite.In this paper,the high-entropy pseudobrookite ceramic is synthesized for the first time.The pure high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) with the pseudobrookite structure and the biphasic high-entropy ceramic composed of the highentropy pseudobrookite(Cr,Mn,Fe,Al,Ga)_(2)TiO_(5) and the high-entropy spinel(Cr,Mn,Fe,Al,Ga,Ti)_(3)O_(4) are successfully prepared by the in-situ solid-phase reaction method.The comparison between the theoretical crystal structure of the pseudobrookite and the aberration-corrected scanning transmission electron microscopy(AC-STEM)images of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) shows that the metal ions(M and Ti ions)are disorderly distributed at the A site and the B site in high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5),leading to an unprecedentedly high configurational entropy of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5).The bulk high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) ceramics exhibit a low thermal expansion coefficient of 6.35×10^(−6) K^(−1) in the temperature range of 25-1400℃ and thermal conductivity of 1.840 W·m^(−1)·K^(−1) at room temperature,as well as the excellent thermal stability at 200,600,and 1400℃.Owing to these outstanding properties,high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) is expected to be the promising candidate for high-temperature thermal insulation.This work has further extended the family of different crystal structures of high-entropy ceramics reported to date.展开更多
This scientific paper discusses the information on the structure of the three-component system FeO-TiO_(2)-Al_(2)O_(3),which is necessary for the creation of heat-resistant oxide materials.The structure of binary syst...This scientific paper discusses the information on the structure of the three-component system FeO-TiO_(2)-Al_(2)O_(3),which is necessary for the creation of heat-resistant oxide materials.The structure of binary systems:FeO-Al_(2)O_(3),FeO-TiO_(2),and Al_(2)O_(3)-TiO_(2)is described,and the data on the FeO-TiO_(2)-Al_(2)O_(3)system are presented.The thermodynamic data of all compounds of the system are given,on the basis of which the change in the Gibbs free energy in the temperature range of 800-1900 K for twenty-one exchange reactions was calculated.It has been established that the triangulation of the FeO-TiO_(2)-Al_(2)O_(3)system changes in five temperature ranges:up to 1408 K(TiO_(2)exists in the polymorphic modification-anatase),1408-1537 K(TiO_(2)exists in the polymorphic modification-rutile and pseudobrookite is stable),1537-1630 K(thialite is stable),1630-2076 K(rearrangement cannot occur)and above 2076 K(the presence of the stoichiometric compound Al_(4)TiO_(8)is allowed).Two-phase equilibria up to 1408 K are stable:Al_(2)O_(3)-FeTiO_(3),FeTiO_(3)-FeAl_(2)O_(4),and FeAl_(2)O_(4)-Fe_(2)TiO_(4);in the temperature range of 1408-1537 K:FeAl_(2)O_(4)-TiO_(2),FeAl_(2)O_(4)-FeTi_(2)O_(5),FeAl_(2)O_(4)-FeTiO_(3),and FeAl_(2)O_(4)-Fe_(2)TiO_(4);in the temperature range of 1537-1630 K:FeAl_(2)O_(4)-TiO_(2),FeAl_(2)O_(4)-FeTi_(2)O_(5),FeAl_(2)O_(4)-FeTiO_(3),FeAl_(2)O_(4)-Fe_(2)TiO_(4),and FeAl_(2)O_(4)-Al_(2)TiO_(5);in the temperature range of 1630-2076 K:FeTi_(2)O_(5)-Al_(2)TiO_(5),Al_(2)TiO_(5)-FeTiO_(3),FeTiO_(3)-Al_(2)O_(3),FeTiO_(3)-FeAl_(2)O_(4),and FeAl_(2)O_(4)-Fe_(2)TiO_(4);over 2076 K:FeTi_(2)O_(5)-Al_(2)TiO_(5),FeTi_(2)O_(5)-Al_(4)TiO_(8),Al_(4)TiO_(8)-FeTiO_(3),Al_(4)TiO_(8)-Fe_(2)TiO_(4),Al_(4)TiO_(8)-FeO,and Al_(4)TiO_(8)-FeAl_(2)O_(4).展开更多
Synthesis of ultrathin heterostructures has received much attention in the recent past due to their unique physical and chemical properties.In this work,we report the synthesis of Fe_(2)TiO_(5)–TiO_(2)heterostructure...Synthesis of ultrathin heterostructures has received much attention in the recent past due to their unique physical and chemical properties.In this work,we report the synthesis of Fe_(2)TiO_(5)–TiO_(2)heterostructures using a simple hydrothermal technique employing natural ilmenite as the source.Hierarchically arranged nanostructures with interconnected nano-petals of thickness around 50 nm are obtained.The electrocatalytic properties of the synthesized Fe_(2)TiO_(5)–TiO_(2)heterostructures are enhanced following the cathodization technique.The observed enhancement in the synthesized materials’electrocatalytic property can be attributed to the defect-rich Fe_(2-x)TiO_(5-x)-TiO_(2-x)heterostructures.The current approach and technique discussed in this work offer a simple method to synthesize a nanostructured heterostructure material and create defects for enhancing electrocatalytic activity.展开更多
基金Project supported by the National Natural Science Foundation of China(51672228)the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(11zxfk26)Science Development Foundation of China Academy of Engineering Physics
文摘In this study, Nd-bearing zirconolite-rich ceramics were prepared by solid-state reaction process using CaF2,ZrO2, Ti,TiO2, Fe2 O3 and Nd2O3 as the raw materials. Neodymium was used as trivalent actinide surrogate and designed to substitute the Ca and Zr sites of zirconolite with general stoichiometry of Ca1-xZr1-xNd2 xTi2O7(0≤x≤0.3). Density of Fe-Nd-O sample reaches a maximum value of 4.13 g/cm^2 after being sintered at 1325 ℃ for 42 h. Three major phases, namely zirconolite, perovskite and pseudobrookite, are observed in all these samples. The EDX result shows that Nd2O3 can be successfully incorporated into the lattice structure of the prepared zirconolite-rich minerals and replace the Ca sites of zirconolite and perovskite with Fe3+ as the charge-compensating ion. Furthermore, the thermal conductivities are all in the range of 1.51-1.67 W/(m·K). The normalized elemental leaching rates of Ca and Nd in the Fe-Nd-0.2 sample keep in low values of 6.20 × 10^-2 and 4.86 × 10^-4 g/(m^2·d) after 42 d.
基金financial support from the National Key R&D Program of China(No.2023YFB3711200)the National Natural Science Foundation of China(No.52172072).
文摘It is well known that the grain size of high-entropy ceramics is quite small owing to the sluggish diffusion effect. However, abnormal grain growth often occurs in high-entropy pseudobrookite ceramics, ultimately resulting in the formation of many abnormally grown grains with a grain size as large as 50 μm. To study this phenomenon, the grain growth behavior of high-entropy pseudobrookite ceramics was systematically investigated in this paper. The results demonstrate that the starting material powders first react with each other to form a high-entropy intermediate phase and calcined TiO_(2) powders (TiO_(2)-1100 ℃), and then as the sintering temperature increases, the formed high-entropy intermediate phase further reacts with TiO_(2)-1100 ℃ to form high-entropy pseudobrookite ceramics. Thus, in this system, in addition to the sluggish diffusion effect, the grain sizes of the high-entropy intermediate phase and TiO_(2)-1100 ℃ also affect the morphology of high-entropy pseudobrookite. Compared to nanosized TiO_(2), micron-sized TiO_(2) has a lower sintering activity. Therefore, the high-entropy intermediate phases (Mg,Co,Ni,Zn)TiO_(3) and TiO_(2)-1100 ℃ prepared with micron-sized starting materials exhibit lower grain sizes, finally resulting in the formation of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with small grain sizes. Moreover, nano-indentation and thermal conductivity tests were carried out on high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with different morphologies. The results show that the hardness of high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) increases from 6.05 to 9.95 GPa as the grain size increases, whereas the thermal conductivity decreases from 2.091±0.006 to 1.583±0.006 W·m^(−1)·K^(−1). All these results indicate that high-entropy (Mg,Co,Ni,Zn)Ti_(2)O_(5) with a small grain size is a potential material for thermal protection.
基金financially supported by National Nature Science Foundation of China(Grant No.51402247 and 41630646)Sichuan Province Education Department Innovation Team Foundation(16zd1104)+2 种基金Sichuan Province Science Foundation for Young Scientists(No.15zs2111)Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials(No.13zxfk11)Doctoral Research Foundation of Southwest University of Science and Technology(No.14zx7119)
文摘To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays(TONTAs), ZnFe_2O_4(ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltageassisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions(0.025 mg m L^(-1)) were kept under a60 V bias voltage for 1 h. After annealing at 750 °C for2 h, the heterostructured ZFO/Fe_2 TiO_5(FTO)/TiO_2 composite nanotube arrays were successfully obtained. Furthermore, Fe^(3+)was reduced to Fe^(2+)when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced thevisible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight.
基金Financial support was given by the Grants-in-Aid for Challenging Exploratory Research(No.26630374)in 2014–2015,Japan Society for Promotion of Science(JSPS)
文摘Rutile (TiO2) is heavily used in pigments mid colormlts, mid the most abundmlt source of rutile is ilmeinte. Upon oxidation of ilmeinte, mtile cml be formed wiffl modest energy consumption; furfflermore, after leaching, only a few byproducts are formed. Unfortunate- ly, one drawback is file necessarily long oxidative process of typically used mefflods. In fflis study, we show fflat a fluidized bed reactor cml be used to oxidize ilmeinte ore to rapidly form ruffle mid pseudobrookite (Fe2TiOs) phases. Ilmeinte was oxidized wiffl 5vo1% 02 in Ar at temperatures of 1173 K or 1223 K mid subsequently leached using a diluted H2SO4 solution to dissolve file pseudobrookite phase. The effects of acid concentration, temperature, mid cooling rate after oxidation were investigated. We show fflat file ilmeinte was rapidly oxidized to form rutile mid pseudobrookite phases at 1173 mid 1223 K in a 5vo1% O2/95vo1% Ar environment wifflin 40 min. The fmal maximum mtile yield was 84.2mo1% after leaching in (1 + 1) H2SO4 solution at 393 K for 12 h.
文摘The research is devoted to the multicomponent system CaTiSiO5-YFeSnO5. The synthesis of solid solutions Ca1-xYxTi1-xSnxSi1-xFexO5 (x = 0 - 1.0, Δx = 0.1) was conducted in low-temperature plasma of hydrogen-oxygen flame. It was found that ions Ca2+, Ti4+ and Si4+ in the molecule of titanit may be substituted with t ions Y3+, Fe3+ and Sn4+. In this case, the system produces two phases of variable composition with broad regions of homogeneity. There were defined the boundaries of formed phases, crystallographic and electrical parameters of the solid solutions. All solid solutions have a semiconductor conductivity type, whose value is linearly dependent on the temperature and com- position of the sample.
基金the National Natural Science Foundation of China(No.52172072).
文摘As a type of titanate,the pseudobrookite(MTi_(2)O_(5)/M_(2)TiO_(5))exhibits a low thermal expansion coefficient and thermal conductivity,as well as excellent dielectric and solar spectrum absorption properties.However,the pseudobrookite is unstable and prone to decomposing below 1200℃,which limits the practical application of the pseudobrookite.In this paper,the high-entropy pseudobrookite ceramic is synthesized for the first time.The pure high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) with the pseudobrookite structure and the biphasic high-entropy ceramic composed of the highentropy pseudobrookite(Cr,Mn,Fe,Al,Ga)_(2)TiO_(5) and the high-entropy spinel(Cr,Mn,Fe,Al,Ga,Ti)_(3)O_(4) are successfully prepared by the in-situ solid-phase reaction method.The comparison between the theoretical crystal structure of the pseudobrookite and the aberration-corrected scanning transmission electron microscopy(AC-STEM)images of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) shows that the metal ions(M and Ti ions)are disorderly distributed at the A site and the B site in high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5),leading to an unprecedentedly high configurational entropy of high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5).The bulk high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) ceramics exhibit a low thermal expansion coefficient of 6.35×10^(−6) K^(−1) in the temperature range of 25-1400℃ and thermal conductivity of 1.840 W·m^(−1)·K^(−1) at room temperature,as well as the excellent thermal stability at 200,600,and 1400℃.Owing to these outstanding properties,high-entropy(Mg,Co,Ni,Zn)Ti_(2)O_(5) is expected to be the promising candidate for high-temperature thermal insulation.This work has further extended the family of different crystal structures of high-entropy ceramics reported to date.
文摘This scientific paper discusses the information on the structure of the three-component system FeO-TiO_(2)-Al_(2)O_(3),which is necessary for the creation of heat-resistant oxide materials.The structure of binary systems:FeO-Al_(2)O_(3),FeO-TiO_(2),and Al_(2)O_(3)-TiO_(2)is described,and the data on the FeO-TiO_(2)-Al_(2)O_(3)system are presented.The thermodynamic data of all compounds of the system are given,on the basis of which the change in the Gibbs free energy in the temperature range of 800-1900 K for twenty-one exchange reactions was calculated.It has been established that the triangulation of the FeO-TiO_(2)-Al_(2)O_(3)system changes in five temperature ranges:up to 1408 K(TiO_(2)exists in the polymorphic modification-anatase),1408-1537 K(TiO_(2)exists in the polymorphic modification-rutile and pseudobrookite is stable),1537-1630 K(thialite is stable),1630-2076 K(rearrangement cannot occur)and above 2076 K(the presence of the stoichiometric compound Al_(4)TiO_(8)is allowed).Two-phase equilibria up to 1408 K are stable:Al_(2)O_(3)-FeTiO_(3),FeTiO_(3)-FeAl_(2)O_(4),and FeAl_(2)O_(4)-Fe_(2)TiO_(4);in the temperature range of 1408-1537 K:FeAl_(2)O_(4)-TiO_(2),FeAl_(2)O_(4)-FeTi_(2)O_(5),FeAl_(2)O_(4)-FeTiO_(3),and FeAl_(2)O_(4)-Fe_(2)TiO_(4);in the temperature range of 1537-1630 K:FeAl_(2)O_(4)-TiO_(2),FeAl_(2)O_(4)-FeTi_(2)O_(5),FeAl_(2)O_(4)-FeTiO_(3),FeAl_(2)O_(4)-Fe_(2)TiO_(4),and FeAl_(2)O_(4)-Al_(2)TiO_(5);in the temperature range of 1630-2076 K:FeTi_(2)O_(5)-Al_(2)TiO_(5),Al_(2)TiO_(5)-FeTiO_(3),FeTiO_(3)-Al_(2)O_(3),FeTiO_(3)-FeAl_(2)O_(4),and FeAl_(2)O_(4)-Fe_(2)TiO_(4);over 2076 K:FeTi_(2)O_(5)-Al_(2)TiO_(5),FeTi_(2)O_(5)-Al_(4)TiO_(8),Al_(4)TiO_(8)-FeTiO_(3),Al_(4)TiO_(8)-Fe_(2)TiO_(4),Al_(4)TiO_(8)-FeO,and Al_(4)TiO_(8)-FeAl_(2)O_(4).
文摘Synthesis of ultrathin heterostructures has received much attention in the recent past due to their unique physical and chemical properties.In this work,we report the synthesis of Fe_(2)TiO_(5)–TiO_(2)heterostructures using a simple hydrothermal technique employing natural ilmenite as the source.Hierarchically arranged nanostructures with interconnected nano-petals of thickness around 50 nm are obtained.The electrocatalytic properties of the synthesized Fe_(2)TiO_(5)–TiO_(2)heterostructures are enhanced following the cathodization technique.The observed enhancement in the synthesized materials’electrocatalytic property can be attributed to the defect-rich Fe_(2-x)TiO_(5-x)-TiO_(2-x)heterostructures.The current approach and technique discussed in this work offer a simple method to synthesize a nanostructured heterostructure material and create defects for enhancing electrocatalytic activity.