期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于主题一致性保持和伪相关反馈库扩展的缺陷报告重构方法
1
作者 刘文杰 邹卫琴 +1 位作者 蔡碧瑜 陈冰婷 《计算机科学》 CSCD 北大核心 2024年第7期1-9,共9页
为了加快开发人员定位软件缺陷,研究人员提出了一系列基于文本检索的缺陷定位技术,自动为用户所提交的缺陷报告推荐可疑的代码文件。由于用户的专业知识不同,编写的缺陷报告质量不一致,因此某些低质量的缺陷报告无法被成功定位。对低质... 为了加快开发人员定位软件缺陷,研究人员提出了一系列基于文本检索的缺陷定位技术,自动为用户所提交的缺陷报告推荐可疑的代码文件。由于用户的专业知识不同,编写的缺陷报告质量不一致,因此某些低质量的缺陷报告无法被成功定位。对低质量的缺陷报告进行重构从而改进其定位效果,是常见的解决方案。现有基于查询扩展和查询缩减的主流重构方法,容易出现重构前后查询主题不一致或所依赖伪相关库质量差导致重构质量低的问题。对此,提出了一种基于主题一致性保持和伪相关反馈库扩展的缺陷报告重构方法,由主题一致性保持的查询缩减阶段和伪相关反馈库扩展的查询扩展阶段两部分组成。查询缩减阶段将缺陷报告的概要问题描述和从问题描述文本中提取的关键词合并来解决主题不一致性问题;查询扩展阶段综合使用多种定位工具(即Lucene, BugLocator和Blizzard)来获得伪相关反馈库,并从中提取查询扩展关键词,以解决现有伪相关反馈库质量差导致的重构质量低的问题;最后将查询缩减和扩展阶段的输出合并得到重构后的查询。通过在6个Java项目上进行实验发现,对于使用现有缺陷定位方法无法在TOP 10可疑推荐文件中定位的低质量缺陷报告,使用所提重构方法后,能定位其中21%~39%的缺陷即Accuracy@10,MRR@10为10%~16%。对比现有重构技术,所提重构方法在Accuracy@10和MRR@10两个指标上分别可以提升7%~32%和2%~13%。 展开更多
关键词 缺陷定位 查询重构 查询缩减 查询扩展 伪相关反馈库 缺陷报告质量
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部