期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Using position specific scoring matrix and auto covariance to predict protein subnuclear localization 被引量:2
1
作者 Rong-Quan Xiao Yan-Zhi Guo +4 位作者 Yu-Hong Zeng Hai-Feng Tan Hai-Feng Tan Xue-Mei Pu Meng-Long Li 《Journal of Biomedical Science and Engineering》 2009年第1期51-56,共6页
The knowledge of subnuclear localization in eukaryotic cells is indispensable for under-standing the biological function of nucleus, genome regulation and drug discovery. In this study, a new feature representation wa... The knowledge of subnuclear localization in eukaryotic cells is indispensable for under-standing the biological function of nucleus, genome regulation and drug discovery. In this study, a new feature representation was pro-posed by combining position specific scoring matrix (PSSM) and auto covariance (AC). The AC variables describe the neighboring effect between two amino acids, so that they incorpo-rate the sequence-order information;PSSM de-scribes the information of biological evolution of proteins. Based on this new descriptor, a support vector machine (SVM) classifier was built to predict subnuclear localization. To evaluate the power of our predictor, the benchmark dataset that contains 714 proteins localized in nine subnuclear compartments was utilized. The total jackknife cross validation ac-curacy of our method is 76.5%, that is higher than those of the Nuc-PLoc (67.4%), the OET- KNN (55.6%), AAC based SVM (48.9%) and ProtLoc (36.6%). The prediction software used in this article and the details of the SVM parameters are freely available at http://chemlab.scu.edu.cn/ predict_SubNL/index.htm and the dataset used in our study is from Shen and Chou’s work by downloading at http://chou.med.harvard.edu/ bioinf/Nuc-PLoc/Data.htm. 展开更多
关键词 Position Specific SCORING Matrix AUTO COVARIANCE Support VECTOR Machine protein subnuclear localization prediction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部