The selective hydrogenation of propyne to propylene has attracted great attention in chemical industry for removing trace amount of propyne for producing polymer-grade propylene. As the state-of-the-art catalyst, Pd s...The selective hydrogenation of propyne to propylene has attracted great attention in chemical industry for removing trace amount of propyne for producing polymer-grade propylene. As the state-of-the-art catalyst, Pd suffers from the disadvantage of poor propylene selectivity due to the over-hydrogenation of propylene to propane. We here demonstrate that Pd nanocubes (NCs) coated by zeolitic imidazolate frameworks (i.e., Pd NCs@ZIF-8) can serve as highly active and selective catalysts for propyne selective hydrogenation (PSH). Benefitting from the unique properties and abundant groups of ZIF-8, Pd carbide (Pd-C) is formed on the surface of Pd NCs after thermal treatment, which acts the active sites for PSH to propylene. More importantly, the content of Pd-C can be precisely controlled by altering the calcination temperature without aggregation of Pd NCs and obvious changes in the framework of ZIF-8. The formation of Pd-C on Pd NCs@ZIF-8 can strongly suppress the H2 adsorption, and thus selectively catalyze propyne to propylene. Consequently, the optimized catalyst (i.e., Pd NCs@ZIF-8-100) exhibits a propylene selectivity of 96.4% at a propyne conversion of 93.3% at 35 °C and atmospheric pressure. This work may not only provide an efficient catalyst for PSH, but also shed a new light on the catalytic application of ZIFs.展开更多
A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-buta...A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments. The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments, as well as the synergistic effect between 1,3- butadiene and propyne on the formation of a series of aromatic hydrocarbons. Based on the rate of production and sensitivity analyses, key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved. The synergistic effect results from the interaction between 1,3-butadiene and propyne. The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons. Besides, the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously, which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.展开更多
While WCl_6-Ph_4Sn fails to polymerize 1-phenyl-1-propyne (PP) at room temperature, highmolecular weight (M_w up to 410× 10~3) polymers are obtained in high yields (up to 80%) when thepolymerizations of PP are ca...While WCl_6-Ph_4Sn fails to polymerize 1-phenyl-1-propyne (PP) at room temperature, highmolecular weight (M_w up to 410× 10~3) polymers are obtained in high yields (up to 80%) when thepolymerizations of PP are carried out in the presence of C_(60) using the W catalyst under the same conditions.The polymers are soluble in common organic solvents such as THF, chloroform, and toluene. Molecularstructures of the polymers are characterized by FT-IR, UV, NMR, GPC and XRD, and it is found that C_(60) iscopolymerized with PP. Thus C_(60) plays the dual roles of comonomer and cocatalyst in the polymerizationreaction. C_(60) contents of the copolymers can be easily changed by varying the C_(60) amounts in the feedmixtures. The copolymers effectively limit strong 532 nm laser pulses, whose limiting performance issuperior to that of parent C_(60).展开更多
本文通过多相催化-仲氢诱导超极化(HET-PHIP)核磁共振(NMR)技术研究了Pd-Cu/SiO_2双金属催化剂上丙炔选择性加氢反应.首先利用等体积浸渍法和连续浸渍法合成了一系列不同Pd/Cu比例和形貌的Pd-Cu/SiO_2双金属催化剂.通过ALTADENA(Adiabat...本文通过多相催化-仲氢诱导超极化(HET-PHIP)核磁共振(NMR)技术研究了Pd-Cu/SiO_2双金属催化剂上丙炔选择性加氢反应.首先利用等体积浸渍法和连续浸渍法合成了一系列不同Pd/Cu比例和形貌的Pd-Cu/SiO_2双金属催化剂.通过ALTADENA(Adiabatic Longitudinal Transport After Dissociation Engenders Net Alignment)方法发现,催化剂的Pd/Cu比例和形貌均对PHIP的极化效率有较大影响.随着Pd-Cu双金属催化剂中Pd比例的增大,PHIP极化效率降低,同时反应活性增强.在同Pd/Cu比例下,相对于等体积浸渍法,连续浸渍法制备的层叠形貌催化剂具有较弱的极化效率以及较强的催化活性,这是由于催化剂表面暴露出的Pd数量增多,导致催化活性增强;同时单个Pd集簇表面积增大,使得氢原子移动范围扩大,从而造成极化效率降低.展开更多
The permeability of copoly (1-trimethylsilyl-1-propyne-pentamethyldisilyl-1-propyne) membrane for twelve gases (0_2, N_2, CO_2, H_2, D_2, He, At, CH_4, C_2H_4, C_2H_6, C_3H_6 and C_3H_8) was examined. The basic laws o...The permeability of copoly (1-trimethylsilyl-1-propyne-pentamethyldisilyl-1-propyne) membrane for twelve gases (0_2, N_2, CO_2, H_2, D_2, He, At, CH_4, C_2H_4, C_2H_6, C_3H_6 and C_3H_8) was examined. The basic laws of solution and diffusion of the gases in the membrane were expounded preliminarily. It was found that a linear relationship between logarithm of diffusion coefficient (D) and critical molar volume (V_c) of the gases. The permeation characteristics of the gases in the copoly (1-trimethylsilyl-1-propyne-pentamethyldisilyl-1-propyne) membrane was also discussed.展开更多
Chemical vapor deposition has been widely used to prepare the films of silicon, diamond and other inorganic species. Preparation of molecular crystal from chemical reactions in the vapor phase is seldom reported. Hept...Chemical vapor deposition has been widely used to prepare the films of silicon, diamond and other inorganic species. Preparation of molecular crystal from chemical reactions in the vapor phase is seldom reported. Hepta-condensed form of 1-propyne-1. 3-diol molecular crystal produced via vapor phase chemical reaction is reported and展开更多
基金This work was supported by the National Natural Science Foundation of China (Nos. 21703146 and 51802206)Natural Science Foundation of Jiangsu Province (No. BK20180846)+1 种基金We also acknowledge the financial support from the 111 Project, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD),SWC for Synchrotron Radiation. Yong Xu acknowledges the financial support from Guangdong University of Technology.
文摘The selective hydrogenation of propyne to propylene has attracted great attention in chemical industry for removing trace amount of propyne for producing polymer-grade propylene. As the state-of-the-art catalyst, Pd suffers from the disadvantage of poor propylene selectivity due to the over-hydrogenation of propylene to propane. We here demonstrate that Pd nanocubes (NCs) coated by zeolitic imidazolate frameworks (i.e., Pd NCs@ZIF-8) can serve as highly active and selective catalysts for propyne selective hydrogenation (PSH). Benefitting from the unique properties and abundant groups of ZIF-8, Pd carbide (Pd-C) is formed on the surface of Pd NCs after thermal treatment, which acts the active sites for PSH to propylene. More importantly, the content of Pd-C can be precisely controlled by altering the calcination temperature without aggregation of Pd NCs and obvious changes in the framework of ZIF-8. The formation of Pd-C on Pd NCs@ZIF-8 can strongly suppress the H2 adsorption, and thus selectively catalyze propyne to propylene. Consequently, the optimized catalyst (i.e., Pd NCs@ZIF-8-100) exhibits a propylene selectivity of 96.4% at a propyne conversion of 93.3% at 35 °C and atmospheric pressure. This work may not only provide an efficient catalyst for PSH, but also shed a new light on the catalytic application of ZIFs.
基金This work is supported by the National Natural Science Foundation of China (No.51476155, No.51622605, No.91541201), the National Key Sci- entific Instruments and Equipment Development Program of China (No.2012YQ22011305), the National Postdoctoral Program for Innovative Talents (No.BX201600100), and China Postdoctoral Science Foundation (No.2016M600312).
文摘A numerical investigation on the co-pyrolysis of 1,3-butadiene and propyne is performed to explore the synergistic effect between fuel components on aromatic hydrocarbon formation. A detailed kinetic model of 1,3-butadiene/propyne co-pyrolysis with the sub-mechanism of aromatic hydrocarbon formation is developed and validated on previous 1,3-butadiene and propyne pyrolysis experiments. The model is able to reproduce both the single component pyrolysis and the co-pyrolysis experiments, as well as the synergistic effect between 1,3- butadiene and propyne on the formation of a series of aromatic hydrocarbons. Based on the rate of production and sensitivity analyses, key reaction pathways in the fuel decomposition and aromatic hydrocarbon formation processes are revealed and insight into the synergistic effect on aromatic hydrocarbon formation is also achieved. The synergistic effect results from the interaction between 1,3-butadiene and propyne. The easily happened chain initiation in the 1,3-butadiene decomposition provides an abundant radical pool for propyne to undergo the H-atom abstraction and produce propargyl radical which plays key roles in the formation of aromatic hydrocarbons. Besides, the 1,3-butadiene/propyne co-pyrolysis includes high concentration levels of C3 and C4 precursors simultaneously, which stimulates the formation of key aromatic hydrocarbons such as toluene and naphthalene.
基金This work was in part supported by the Hong Kong Research Grants Council(HKUST6062/98P and DAG96/97 SC11).
文摘While WCl_6-Ph_4Sn fails to polymerize 1-phenyl-1-propyne (PP) at room temperature, highmolecular weight (M_w up to 410× 10~3) polymers are obtained in high yields (up to 80%) when thepolymerizations of PP are carried out in the presence of C_(60) using the W catalyst under the same conditions.The polymers are soluble in common organic solvents such as THF, chloroform, and toluene. Molecularstructures of the polymers are characterized by FT-IR, UV, NMR, GPC and XRD, and it is found that C_(60) iscopolymerized with PP. Thus C_(60) plays the dual roles of comonomer and cocatalyst in the polymerizationreaction. C_(60) contents of the copolymers can be easily changed by varying the C_(60) amounts in the feedmixtures. The copolymers effectively limit strong 532 nm laser pulses, whose limiting performance issuperior to that of parent C_(60).
文摘本文通过多相催化-仲氢诱导超极化(HET-PHIP)核磁共振(NMR)技术研究了Pd-Cu/SiO_2双金属催化剂上丙炔选择性加氢反应.首先利用等体积浸渍法和连续浸渍法合成了一系列不同Pd/Cu比例和形貌的Pd-Cu/SiO_2双金属催化剂.通过ALTADENA(Adiabatic Longitudinal Transport After Dissociation Engenders Net Alignment)方法发现,催化剂的Pd/Cu比例和形貌均对PHIP的极化效率有较大影响.随着Pd-Cu双金属催化剂中Pd比例的增大,PHIP极化效率降低,同时反应活性增强.在同Pd/Cu比例下,相对于等体积浸渍法,连续浸渍法制备的层叠形貌催化剂具有较弱的极化效率以及较强的催化活性,这是由于催化剂表面暴露出的Pd数量增多,导致催化活性增强;同时单个Pd集簇表面积增大,使得氢原子移动范围扩大,从而造成极化效率降低.
文摘The permeability of copoly (1-trimethylsilyl-1-propyne-pentamethyldisilyl-1-propyne) membrane for twelve gases (0_2, N_2, CO_2, H_2, D_2, He, At, CH_4, C_2H_4, C_2H_6, C_3H_6 and C_3H_8) was examined. The basic laws of solution and diffusion of the gases in the membrane were expounded preliminarily. It was found that a linear relationship between logarithm of diffusion coefficient (D) and critical molar volume (V_c) of the gases. The permeation characteristics of the gases in the copoly (1-trimethylsilyl-1-propyne-pentamethyldisilyl-1-propyne) membrane was also discussed.
文摘Chemical vapor deposition has been widely used to prepare the films of silicon, diamond and other inorganic species. Preparation of molecular crystal from chemical reactions in the vapor phase is seldom reported. Hepta-condensed form of 1-propyne-1. 3-diol molecular crystal produced via vapor phase chemical reaction is reported and