Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids c...Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.展开更多
Auxin response factors(ARFs) are transcription factors that activate or repress the expression of primary/early auxin response genes by binding to auxin-responsive elements(Aux REs) in their promoter regions. The ARFs...Auxin response factors(ARFs) are transcription factors that activate or repress the expression of primary/early auxin response genes by binding to auxin-responsive elements(Aux REs) in their promoter regions. The ARFs play important roles in diverse developmental processes.To explore the ARF gene family in hot pepper(Capsicum annuum L.), we performed a genome-wide identification and expression analysis. In this study, 19 pepper ARF genes(Ca ARFs) clustered into three phylogenetic groups(I, II, and III) were comprehensively analyzed. Conserved domain analysis showed that all Ca ARFs contained a B3 DNA-binding domain and a middle domain, but two members lacked the carboxyterminal dimerization(CTD) domain. The number of introns in Ca ARF genes ranged from 1 to 13 and the gene structure was similar among genes in the same phylogenetic group. Additionally, prediction of Ca ARFs promoter elements and putative targets for micro RNAs suggested that the regulation of Ca ARFs may occur at both transcriptional and posttranscriptional levels. Most Ca ARFs were expressed in more than one tested tissue, and most Ca ARFs were identified as being responsive to exogenous auxin. Moreover, time-course transcription profiles of Ca ARFs revealed their roles in adventitious rooting of hypocotyl cuttings from pepper seedlings. Therefore, our results will provide a foundation for better understanding the regulatory mechanisms and molecular functions of Ca ARFs in hot pepper.展开更多
With the development of high-throughput biology techniques and artificial intelligence,it has become increasingly feasible to design and construct artificial biological parts,modules,circuits,and even whole systems.To...With the development of high-throughput biology techniques and artificial intelligence,it has become increasingly feasible to design and construct artificial biological parts,modules,circuits,and even whole systems.To overcome the limitations of native promoters in controlling gene expression,artificial promoter design aims to synthesize short,inducible,and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways.Synthetic promoters are versatile and can drive gene expression accurately with smart responses;they show potential for enhancing desirable traits in crops,thereby improving crop yield,nutritional quality,and food security.This review first illustrates the importance of synthetic promoters,then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction.Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.展开更多
基金This research was supported by National Key Research and Development Program of China(Grant No.2018YFD1000200)National Natural Science Foundation of China(Grant nos.31930095 and 31630065)We should thank Prof.Zuoxiong Liu for editing the English language of the manuscript.
文摘Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.
基金supported by the National Natural Science Foundation of China (31172001)the Special Fund for Agro-scientific Research in the Public Interest (201303014)+1 种基金the China Agriculture Research System (CARS-25)the Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-IVFCAAS)
文摘Auxin response factors(ARFs) are transcription factors that activate or repress the expression of primary/early auxin response genes by binding to auxin-responsive elements(Aux REs) in their promoter regions. The ARFs play important roles in diverse developmental processes.To explore the ARF gene family in hot pepper(Capsicum annuum L.), we performed a genome-wide identification and expression analysis. In this study, 19 pepper ARF genes(Ca ARFs) clustered into three phylogenetic groups(I, II, and III) were comprehensively analyzed. Conserved domain analysis showed that all Ca ARFs contained a B3 DNA-binding domain and a middle domain, but two members lacked the carboxyterminal dimerization(CTD) domain. The number of introns in Ca ARF genes ranged from 1 to 13 and the gene structure was similar among genes in the same phylogenetic group. Additionally, prediction of Ca ARFs promoter elements and putative targets for micro RNAs suggested that the regulation of Ca ARFs may occur at both transcriptional and posttranscriptional levels. Most Ca ARFs were expressed in more than one tested tissue, and most Ca ARFs were identified as being responsive to exogenous auxin. Moreover, time-course transcription profiles of Ca ARFs revealed their roles in adventitious rooting of hypocotyl cuttings from pepper seedlings. Therefore, our results will provide a foundation for better understanding the regulatory mechanisms and molecular functions of Ca ARFs in hot pepper.
基金funded by Key Research and Development Projects(nos.2018YFA0901000 and 2018YFA0901003)the BIO-Agri.project of SJTU.
文摘With the development of high-throughput biology techniques and artificial intelligence,it has become increasingly feasible to design and construct artificial biological parts,modules,circuits,and even whole systems.To overcome the limitations of native promoters in controlling gene expression,artificial promoter design aims to synthesize short,inducible,and conditionally controlled promoters to coordinate the expression of multiple genes in diverse plant metabolic and signaling pathways.Synthetic promoters are versatile and can drive gene expression accurately with smart responses;they show potential for enhancing desirable traits in crops,thereby improving crop yield,nutritional quality,and food security.This review first illustrates the importance of synthetic promoters,then introduces promoter architecture and thoroughly summarizes advances in synthetic promoter construction.Restrictions to the development of synthetic promoters and future applications of such promoters in synthetic plant biology and crop improvement are also discussed.